Том 3, Выпуск 3 Стр. 110–135 (2025) УДК 517.938.5 MSC 37B40, 37B45, 37E25, 54F50

О минимальных множествах непрерывных отображений на одномерных континуумах

Е.Н. Махрова

Аннотация. Пусть X – конечное дерево, а $f: X \to X$ – непрерывное отображение, имеющее нулевую топологическую энтропию и бесконечное минимальное множество M. Нами доказано, что сужение $f_{|M}$ отображения f на M топологически сопряжено отображению счетчика τ_{α} , где $\alpha=(j_1,\ldots,j_n,\,2,\,2,\ldots)$ есть последовательность при $j_i\geq 2$ для $1\leq i\leq n$. Дано описание топологической структуры конечных деревьев, на которых существуют непрерывные отображения с нулевой топологической энтропией и бесконечным минимальным множеством M, на котором отображение $f_{|M}$ топологически сопряжено счетчику τ_{α} , где $\alpha=(j_1,\ldots,j_n,\,2,\,2,\ldots)$. В то же время для любой последовательности $\alpha=(j_1,\ldots,j_i,\ldots)$, где $j_i\geq 2$ для всех $i\geq 1$, существуют дендрит X, не являющийся конечным деревом, и непрерывное отображение f с нулевой топологической энтропией и бесконечным минимальным множеством M, на котором отображение f топологически сопряжено счетчику τ_{α} .

Нами также показано: если X – дендрит, а $f: X \to X$ – непрерывное отображение, имеющее нулевую топологическую энтропию и бесконечное минимальное множество M, то существует такая последовательность $\alpha=(j_1,\ldots,j_i,\ldots)$ $(j_i\geq 2)$, что отображение $f_{|M|}$ полусопряжено отображению счетчика τ_{α} .

Ключевые слова: дендрит, конечное дерево, минимальное множество, отображение счетчика (adding-machine), топологическая энтропия, почти периодическая точка, рекуррентная точка.

DOI: 10.26907/2949-3919.2025.3.110-135

Введение

1. Под континуумом будем понимать компактное связное метрическое пространство. Пусть X – континуум, p – произвольная точка из X. Если связными компонентами границы произвольной окрестности U(p) точки p в X являются одноточечные множества, то X называется одномерным континуумом (см., например, [1, том 1, гл. 2, §25, I]). Локально связный континуум, не содержащий подмножеств, гомеоморфных окружности,

Поступила: 07.06.2025. Принята: 09.09.2025. Опубликована: 16.10.2025.

Благодарности. Исследование выполнено за счет гранта Российского научного фонда N 24-21-00242, https://rscf.ru/project/24-21-00242/.

^{© 2025} Е.Н. Махрова

называется $\partial e n \partial p u m o m$. Из данного определения следует, что дендрит — одномерный континуум.

Пусть X — дендрит, а $p \in X$. Тогда $X \setminus \{p\}$ либо единственное связное множество, либо представимо в виде конечного объединения связных множеств. Каждое связное множество из $X \setminus \{p\}$ назовем компонентой точки p. Если множество $X \setminus \{p\}$ связно, то p называется концевой точкой дендрита X. Если $X \setminus \{p\}$ состоит из более двух компонент, то p — точка ветвления дендрита X. Дендрит с конечным числом концевых точек называется конечным деревом.

Условимся обозначать через R(X) (E(X)) множество точек ветвления (концевых точек) дендрита X.

Пусть X – компактное топологическое пространство, $f: X \to X$ – непрерывное отображение. Непустое множество $M \subset X$ называется минимальным относительно f, если оно замкнуто, инвариантно и не содержит собственных подмножеств, удовлетворяющих указанным свойствам. Если X само является минимальным множеством, то отображение f будем называть минимальным.

Одним из основных вопросов теории динамических систем является вопрос существования минимальных множеств, их взаимосвязи с равенством нулю или положительностью топологической энтропии и свойствами динамической системы. Результаты такого рода исследований непрерывных отображений отрезка или конечных деревьев связаны, в основном, с конечными минимальными множествами, т.е. периодическими орбитами. Так, например, установлена связь между периодами периодических точек, топологической энтропией и свойствами непрерывного отображения отрезка (см., например, [2, гл. 3, § 3]). В [3] получены условия на периодические орбиты непрерывного отображения конечного дерева, при выполнении которых топологическая энтропия заданного отображения положительная. Отметим, что свойства как конечных, так и бесконечных минимальных множеств у непрерывного отображения отрезка и 3-ода изучались в [4,5] с использованием понятия *D*-функции минимального множества. В [6] описаны свойства бесконечных минимальных множеств у непрерывного отображения отрезка с нулевой топологической энтропией. Что касается непрерывных отображений дендритов, то конечные минимальные множества не оказывают влияние на топологическую энтропию [7], зато существует связь между свойствами бесконечных минимальных множеств и топологической энтропией [8].

В нашей работе изучаются свойства бесконечных минимальных множеств у непрерывного отображения с нулевой топологической энтропией, заданного на конечном дереве и дендрите.

2. Чтобы сформулировать основные результаты работы, нам понадобится понятие отображения счетчика (англоязычная версия – adding-machine, odometer, solenoid; см., например, [9]).

Пусть $\alpha=(j_1,j_2,\ldots)$ – последовательность натуральных чисел, где $j_i\geq 2$ для любого натурального числа i, и

$$\triangle_{\alpha} = \{(x_1, x_2, \ldots) : x_i \in \{0, 1, \ldots, j_i - 1\}, i \ge 1\}.$$

Определим метрику на \triangle_{α} , положив

$$d_{\alpha}((x_1, x_2, \dots), (y_1, y_2, \dots)) = \sum_{i=1}^{\infty} \frac{\delta(x_i, y_i)}{2^i},$$

где $\delta(x_i,y_i)=1,$ если $x_i\neq y_i,$ и $\delta(x_i,y_i)=0,$ если $x_i=y_i.$

Определим сложение в \triangle_{α} по следующему правилу:

$$(x_1, x_2, \dots) + (y_1, y_2, \dots) = (z_1, z_2, \dots),$$

где $z_1=(x_1+y_1) \, \mathrm{mod} \, j_1$ и $z_2=(x_2+y_2+t_1) \, \mathrm{mod} \, j_2$. Здесь $t_1=0$, если $x_1+y_1< j_1$, и $t_1=1$, если $x_1+y_1\geq j_1$, и т. д.

Определим отображение счетчика или просто счетчик $\tau_{\alpha}: \triangle_{\alpha} \to \triangle_{\alpha}$ так, чтобы

$$\tau_{\alpha}(x_1, x_2, \ldots) = (x_1, x_2, \ldots) + (1, 0, 0, \ldots).$$

Если $j_i=2$ при любом $i\geq 1$, то положим $\alpha=2$, а отображение τ_2 будем называть ∂sou чным c чет чиком.

В [10, теорема 4.1] показано, что для любой последовательности α счетчик τ_{α} является минимальным отображением. Отметим, что отображение счетчика играет важную роль в описании динамики непрерывного отображения отрезка (см., например, [11–13]).

Перейдем к основным результатам работы. Первая теорема является характеристическим свойством бесконечного минимального множества у непрерывного отображения конечного дерева с нулевой топологической энтропией и является обобщением результата А. Катка и Б. Хасселблата, доказанного для непрерывного отображения отрезка (см. далее теорему 9).

Теорема 1. Пусть X – конечное дерево, непрерывное отображение $f: X \to X$ имеет нулевую топологическую энтропию и бесконечное минимальное множество M. Тогда

- 1) существует такая последовательность α , что отображение $f_{|M}$ топологически сопряжено счетчику τ_{α} , т. е. существует гомеоморфизм $h: M \to \Delta_{\alpha}$, для которого $\tau_{\alpha} \circ h = h \circ f_{|M}$;
- 2) найдется такое натуральное число $n \ge 1$, что $j_i \ge 2$ для $1 \le i \le n$, а $j_i = 2$ для всех $i \ge n + 1$, т. е. последовательность α имеет вид $(j_1, \ldots, j_n, 2, 2, \ldots)$.

Следующая теорема является обратной для теоремы 1 и описывает структуру конечного дерева, допускающего существование непрерывного отображения с нулевой топологической энтропией и с бесконечным минимальным множеством, сужение отображения на которое топологически сопряжено счетчику τ_{α} , где α – любая наперед заданная последовательность вида

$$(j_1, \dots, j_n, 2, 2, \dots)$$
, где $j_i \ge 2$ для $1 \le i \le n$. (1)

Теорема 2. Для любой последовательности α вида (1) существуют конечное дерево X, y которого $\operatorname{card} R(X) = 1 + j_1 + \ldots + j_{n-1}$, u непрерывное отображение $f: X \to X$ c нулевой топологической энтропией такие, что f имеет бесконечное минимальное множество M, на котором отображение $f_{|M}$ топологически сопряжено счетчику τ_{α} , где $\operatorname{card}(\cdot)$ – мощность множества (\cdot) .

Отметим, что для любого конечного дерева X, у которого число точек ветвления меньше, чем $1+j_1+\ldots+j_{n-1}$ и любой последовательности α вида (1) существует непрерывное отображение $f:X\to X$, имеющее бесконечное минимальное множество M, на котором отображение $f_{|M}$ топологически сопряжено счетчику τ_{α} , но топологическая энтропия f положительна.

Следующая теорема показывает, что дендриты допускают существование непрерывных отображений с нулевой топологической энтропией, имеющих бесконечное минимальное множество, на котором каждое заданное отображение топологически сопряжено счетчику τ_{α} для любой наперед заданной последовательности α .

Теорема 3. Для любой последовательности α существуют дендрит Y и непрерывное отображение $f: Y \to Y$, обладающее следующими свойствами:

- 1) топологическая энтропия f равна нулю;
- 2) f имеет бесконечное минимальное множество M, сужение отображения на которое топологически сопряжено счетчику τ_{α} .

В следующей теореме выделен класс дендритов, на которых любое непрерывное отображение с нулевой топологической энтропией и бесконечным минимальным множеством имеет свойство, связанное с отображением счетчика.

Теорема 4. Пусть X – дендрит со счетным числом концевых точек, $f: X \to X$ – непрерывное отображение, имеющее нулевую топологическую энтропию и бесконечное минимальное множество M. Тогда существует такая последовательность α , что сужение $f_{|M}$ отображения f на M полусопряжено отображению счетчику τ_{α} , m. e. существует такое непрерывное сюръективное отображение $h: M \to \Delta_{\alpha}$, что $\tau_{\alpha} \circ h = h \circ f$.

Данная теорема неверна в случае, когда X является окружностью или конечным графом [8, теорема 1.7]. Отметим также, что различия в свойствах отображений, заданных на конечных деревьях и дендритах, у которых имеется бесконечное минимальное множество (см. утверждение 1) теоремы 1 и теорему 4), связаны с различной топологической структурой самого бесконечного минимального множества (см., например, [14,15]).

В заключение данного раздела отметим, что с каждым годом растет интерес к динамическим системам, заданным на одномерных разветвленных континуумах, поскольку

они появляются как множества Жюлиа в комплексных динамических системах [16], как предельные множества динамических систем с фазовыми пространствами размерности, не меньшей двойки [17, 18], как глобальные аттракторы косых произведений и интегрируемых отображений [19, 20], как аттракторы стягиваемых полигональных систем [21], в задачах математической физики [22] и др.

1. Предварительные сведения

1. Обозначим через \mathbb{N} – множество натуральных чисел, \mathbb{C} – множество комплексных чисел, через \mathbf{i} мнимую единицу.

Пусть X – дендрит, A – подмножество в X. Обозначим через diam A диаметр множества A; card A мощность множества A.

Следуя работе [23], связное подмножество дендрита X, замыкание которого гомеоморфно отрезку [0; 1] на прямой \mathbb{R}^1 , будем называть $\partial yzoù$.

Символом [x; y] будем обозначать дугу с концами в точках x и y, содержащую эти точки. Положим $(x; y] = [x; y] \setminus \{x\}, [x; y) = [x; y] \setminus \{y\}, (x; y) = [x; y] \setminus \{x\}$.

Отметим следующие свойства дендритов.

Лемма 5 ([1]). Пусть X – дендрит. Тогда

- 1) любые различные две точки x, y в X можно соединить единственной дугой [x; y];
- 2) множество R(X) точек ветвления дендрита X не более, чем счетно;
- 3) любой подконтинуум дендрита дендрит.

Если X – конечное дерево, то R(X) конечно. Более того, для любой точки p в X число компонент точки p также конечно. Число компонент точки p будем называть nopядком moчки p и обозначать через $ord_X p$.

- **2.** Пусть $f: X \to X$ непрерывное отображение дендрита X, p произвольная точка в X. Точка p называется
- nepuoduческой точкой отображения <math>f, если существует такое $n \in \mathbb{N}$, что $f^n(p) = p$; наименьшее n, удовлетворяющее данному условию называется nepuodom точки p. Если n = 1, то p называется nepuodom точки p точкой nequodom точкой nequodom
- устойчивой по Пуассону относительно f, если для любой окрестности U(p) точки p найдется такое $n \in \mathbb{N}$, что $f^n(p) \in U(p)$;
- рекуррентной относительно f, если p устойчивая по Пуассону и для любой окрестности U(p) точки p существует $k_0 \in \mathbb{N}$ такое, что если $f^j(p) \in U(p)$ для некоторого $j \geq 1$, то существует натуральное число $0 < k \leq k_0$, для которого $f^{j+k}(x) \in U(p)$;
- почти периодической относительно f, если для любой окрестности U(p) точки p найдется такое натуральное число $n \ge 1$, что $f^{nj}(p) \in U(p)$ для любого $j \ge 1$.

Обозначим через Fix(f), Per(f), Poiss(f), Rec(f), AP(f) – множество неподвижных точек, периодических точек, устойчивых по Пуассону точек, рекуррентных точек, почти периодических точек отображения f, соответственно.

Из приведенных выше определений следуют включения:

$$Fix(f) \subseteq Per(f) \subseteq AP(f) \subseteq Rec(f) \subseteq Poiss(f).$$
 (2)

А из определения рекуррентной точки получаем равенство:

$$\operatorname{Rec}(f) = \operatorname{Rec}(f^n)$$
 для любого $n \in \mathbb{N}$. (3)

Следующая теорема устанавливает связь между минимальным множеством и множеством рекуррентных точек у непрерывного отображения континуума и является переформулировкой характеристического свойства минимальных множеств, полученного Дж. Биркгофом [24, гл. 7, §7].

Теорема 6 ([25]). Пусть X – континуум, $f: X \to X$ – непрерывное отображение, точка $x \in X$. Множество $\overline{\{f^i(x)\}}_{i\geq 0}$ является минимальным тогда и только тогда, когда $x \in \text{Rec}(f)$.

Для доказательства основных результатов работы нам понадобятся следующие утверждения, касающиеся свойств минимальных множеств.

Лемма 7 ([26]). Пусть $f: M \to M$ – минимальное отображение. Тогда для любого открытого множества $U \subset M$ найдется такое $n_0 \in \mathbb{N}$, что $\bigcup_{n=0}^{n_0} f^{-n}(U) = M$.

Теорема 8 ([9]). Пусть $f: X \to X$ – непрерывное отображение компактного метрического пространства X, M – бесконечное минимальное множество в X относительно f. Если любая точка $x \in M$ является почти периодической относительно f, то найдется такая последовательность α , что отображение $f_{|M}$ топологически сопряжено счетчику τ_{α} .

Теорема 9 ([6, теорема 11.3.13]). Пусть непрерывное отображение $f:[0;1] \to [0;1]$ отрезка $[0;1] \subset \mathbb{R}^1$ имеет нулевую топологическую энтропию и замкнутое топологически транзитивное множество M (m. e. cyществует точка $x \in M$ такая, что $\overline{\{f^i(x)\}}_{i \geq 0} = M$) без периодических точек. Тогда отображение $f_{|M}$ топологически сопряжено двоичному счетчику τ_2 .

В частности, теорема 9 справедлива, если M – бесконечное минимальное множество, поскольку любое бесконечное минимальное множество является топологически транзитивным замкнутым множеством без периодических точек.

3. Определение топологической энтропии для непрерывного отображения компактного топологического пространства введено в [27], где доказано следующая

Лемма 10 ([27, теорема 2]). Для любого непрерывного отображения $f: X \to X$ компакта X справедливо равенство $h(f^n) = n \cdot h(f)$.

Положительность топологической энтропии у одномерных динамических систем чаще всего устанавливается в случае существования подковы у заданного отображения. Напомним определение подковы.

Определение 11. Пусть $f: X \to X$ – непрерывное отображение дендрита X. Будем говорить, что f *имеет подкову*, если существуют непустые непересекающиеся подконтинуумы A, B в X такие, что $f(A) \cap f(B) \supset A \cup B$.

Подкову отображения f будем обозначать через (A, B).

Следующая теорема является непосредственным следствием определений топологической энтропии [27] и подковы (см. также [23]).

Теорема 12. Если непрерывное отображение $f: X \to X$ компактного топологического пространства X имеет подкову, то топологическая энтропия отображения f положительна.

2. Доказательство теоремы 1

Для доказательства теоремы 1 нам потребуются следующие вспомогательные утверждения.

Теорема 13 ([28]). Пусть $f: X \to X$ – непрерывное отображение дендрита X, у которого множество концевых точек не более чем счетно, а Y – подконтинуум в X такой, что $Y \subseteq f(Y)$. Тогда $Y \cap \operatorname{Per}(f) \neq \emptyset$.

Пусть X – дендрит, A – подмножество в X. Положим

$$[A] = \bigcup_{x,y \in A} [x, y].$$

Приведем необходимое нам свойство множества [A].

Лемма 14 ([29]). Пусть X – дендрит, A – замкнутое множество в X. Тогда [A] – дендрит, причем множество E([A]) концевых точек дендрита [A] удовлетворяет условию: $E([A]) \subseteq A$.

Пусть непрерывное отображение $f: X \to X$ конечного дерева X имеет бесконечное множество M. Поскольку X – конечное дерево, то в силу леммы 14 [M] – конечное дерево или дуга. Следующее утверждение устанавливает факт существования периодической точки на [M] у непрерывного отображения f.

Пемма 15. Если непрерывное отображение $f: X \to X$ конечного дерева X имеет бесконечное минимальное множество M, то существует периодическая точка p в [M], причем $\operatorname{ord}_Y p \geq 2$.

Доказательство. Так как минимальное множество замкнуто, то в силу леммы 14 [M] – конечное дерево, частным случаем которого является дуга, причем $E(Y) \subset M$. Положим Y = [M]. Из непрерывности f получаем, что f(Y) связно. Так как M – минимальное множество, то f(M) = M. Отсюда и из условий « $E(Y) \subset M$ », «f(Y) связно» получаем, что $Y \subseteq f(Y)$. В силу теоремы 13 существует периодическая точка p в Y. Поскольку $E(Y) \subset M$, а $p \notin M$, то $p \notin E(Y)$, т. е. ord $p \in M$. Лемма 15 доказана.

Отметим, если X — дендрит, не являющийся конечным деревом, то непрерывное отображение $f: X \to X$, у которого существует бесконечное минимальное множество M, может не иметь периодических точек на [M] (см., например, [28,29]). В случае, когда X — конечное дерево и непрерывное отображение $f: X \to X$ имеет бесконечное минимальное множество M, то из леммы 15 получаем, что

$$[M] \cap \operatorname{Per}(f) \neq \emptyset.$$

Пусть p – любая периодическая точка из [M], а x – произвольная точка в M. Положим Y = [M]. Обозначим компоненту точки p в Y, содержащую точку x, через $Y_x(p)$. Докажем вспомогательное утверждение.

Лемма 16. Пусть непрерывное отображение $f: X \to X$ конечного дерева X имеет нулевую топологическую энтропию и бесконечное минимальное множество M. Тогда для любой периодической точки p в Y = [M] периода m и произвольной точки $x \in M$ существует натуральное число n, кратное m, такое, что $\{f^{ni}(x)\}_{i>0} \subset Y_x(p)$.

Доказательство. Так как $x \in M$, то согласно теореме 6 имеем $x \in \text{Rec}(f)$. В силу (3) получаем, что $x \in \text{Rec}(f^m)$. Тогда из определения рекуррентной точки относительно f^m следует

$$Y_x(p) \cap \{f^{mi}(x)\}_{i \ge 1} \ne \emptyset.$$

Рассмотрим следующие случаи:

- (I) существует такое натуральное число $i_0 \ge 1$, что $x \in (p; f^{mi_0}(x));$
- (II) для любого натурального числа $i \ge 1$ не выполнено условие (I).

Пусть имеет место случай (I). Положим $g=f^{mi_0}$. Тогда g(p)=p, и $x\in (p;g(x))$. Покажем, что $g^i(x)\in Y_x(p)$ для любого числа $i\geq 1$. Предположим противное. Тогда существует натуральное число $s\geq 2$ такое, что $g^s(x)\notin Y_x(p)$. Так как g(p)=p, и g([p;x]) связно в силу непрерывности g, то

$$g([p; x]) \supseteq [p; g(x)] \supset [p; x].$$

Поэтому найдется точка $x_1 \in (p; x)$, для которой $g(x_1) = x$. Тогда

$$g([p; x_1]) \supseteq [p; g(x_1)] \supset [p; x_1].$$

Следовательно, существует точка $x_2 \in (p; x_1)$ такая, что $g(x_2) = x_1$. Повторим приведенные рассуждения (s-1) раз $(s \ge 2)$. В результате построим набор точек x_1, \ldots, x_{s-1} , удовлетворяющих следующим свойствам:

- 1) $x_i \in (p; x_{i-1})$ для всех $2 \le i \le s-1$;
- 2) $g(x_i) = x_{i-1}$, и, следовательно, $g^i(x_i) = x$ для каждого $1 \le i \le s-1$.

Покажем, что отображение g^s имеет подкову ($[p; x_{s-1}], [x_{s-2}; g(x)]$). Из свойства 1) точек $\{x_i\}_{i\geq 1}^{s-1}$ следует, что $x_{s-1}\in (p; x_{s-2})$. Поэтому

$$[p; x_{s-1}] \cap [x_{s-2}; g(x)] = \emptyset.$$

Используя непрерывность g, свойства 1)–2) набора точек $\{x_i\}_{i=1}^{s-1}$, получаем:

$$g^{s}([p; x_{s-1}]) \supseteq g([p; g^{(s-1)}(x_{s-1})]) = g([p; x]) \supseteq [p; g(x)] \supset [p; x_{s-1}] \cup [x_{s-2}; g(x)],$$

$$g^{s}([x_{s-2}; g(x)]) \supseteq g^{2}([g^{(s-2)}(x_{s-2}); g^{(s-1)}(x)]) = g^{2}([x; g^{(s-1)}(x)]) \supseteq g([g(x); g^{s}(x)]) \supset$$

$$\supset g([p; x]) \supseteq [p; g(x)] \supset [p; x_{s-1}] \cup [x_{s-2}; g(x)].$$

Таким образом, g^s имеет подкову ($[p; x_{s-1}], [x_{s-2}; g(x)]$). В силу теоремы 12 топологическая энтропия отображения g^s положительная. Согласно лемме 10 топологическая энтропия отображения f также положительна. Последнее противоречит условиям леммы 16. Поэтому $\{g^i(x)\}_{i\geq 0} = \{f^{ni}(x)\}_{i\geq 0} \subset Y_x(p)$, где $n=mi_0$. В первом случае лемма 16 справедлива.

Пусть имеет место случай (II). Выберем окрестность U(x) точки x таким образом, чтобы $U(x)\subset Y_x(p),$ и

$$(U(x) \setminus \{x\}) \cap R(Y) = \emptyset. \tag{4}$$

Поскольку $x \in M$, то согласно теореме 6 справедливо $x \in \text{Rec}(f)$. Используя (3), получаем, что $x \in \text{Rec}(f^m)$. Положим $g = f^m$. Из определения рекуррентной точки отображения g следует существование такого натурального числа $j \geq 1$, что $g^j(x) \in U(x)$. Согласно (4) в случае (II) имеем: $g^j(x) \in (p;x)$. Выберем окрестность $U(g^j(x))$ точки $g^j(x)$ со следующими свойствами:

$$U(g^{j}(x)) \subset U(x), \ U(g^{j}(x)) \cap \{x\} = \emptyset.$$

В силу леммы 7 найдется такое натуральное число $s \ge 1$, что

$$(g^{-s}(x) \cap M) \cap U(g^{j}(x)) \neq \emptyset.$$

Пусть $y \in (g^{-s}(x) \cap M) \cap U(g^j(x))$. Из (4) и выбора окрестности $U(g^j(x))$ точки $g^j(x)$ получаем, что $y \in (p; x)$, причем $g^s(y) = x$. В силу рассмотренного случая (I) выполнено включение: $\{g^{si}(y)\}_{i\geq 0} \subset Y_y(p)$. Следовательно, $\{g^{si}(x)\}_{i\geq 0} \subset Y_y(p)$. Поскольку точки x и y принадлежат одной компоненте точки p, то $\{g^{si}(x)\}_{i\geq 0} \subset Y_x(p)$. Положим n=ms. Тогда все точки $\{f^{ni}(x)\}_{i\geq 0}$ лежат на одной компоненте точки p. Лемма 16 доказана.

Лемма 17. Пусть непрерывное отображение $f: X \to X$ конечного дерева X имеет нулевую топологическую энтропию и бесконечное минимальное множество M. Тогда найдется натуральное число n и множество $M_0 \subset M$ такие, что M_0 – минимальное множество относительно f^n , и $[M_0]$ является дугой.

Доказательство. Положим $Y^{(0)} = [M]$. Утверждение леммы 17 справедливо, если $Y^{(0)}$ является дугой. Рассмотрим случай, когда $Y^{(0)}$ отлично от дуги, т. е. $R(Y^{(0)}) \neq \emptyset$. В силу леммы 15 существует точка $p_1 \in Y^{(0)} \cap \operatorname{Per}(f)$, причем $\operatorname{ord}_{Y^{(0)}} p_1 \geq 2$. Так как $R(Y^{(0)})$ конечно, а $\operatorname{ord}_{Y^{(0)}} p_1 \geq 2$, то найдется компонента $Y_{i_1}^{(0)}(p_1)$ точки p_1 в $Y^{(0)}$ ($1 \leq i_1 \leq \operatorname{ord} p_1$) со следующим свойством:

$$\operatorname{card} R(Y_{i_1}^{(0)}(p_1)) < \operatorname{card} R(Y^{(0)}).$$
 (5)

Пусть x_1 – любая точка из $M \cap Y_{i_1}^{(0)}(p_1)$. Согласно лемме 16 найдется такое натуральное число n_1 , кратное периоду точки p_1 , что

$$\{f^{n_1i}(x_1)\}_{i\geq 0}\subset Y_{i_1}^{(0)}(p_1).$$

Положим $M_1 = \overline{\{f^{n_1i}(x_1)\}}_{i\geq 0}$. Так как $x_1\in M$, то из теоремы 6 получаем $x_1\in \mathrm{Rec}(f)$. Согласно (3) имеем $x_1\in \mathrm{Rec}(f^{n_1})$. Тогда из теоремы 6 следует, что M_1 – минимальное множество относительно f^{n_1} . Поскольку $p_1\notin M$, то $M_1\subset Y_{i_1}^{(0)}(p_1)$. Следовательно, $[M_1]\subset Y_{i_1}^{(0)}(p_1)$. Положим $Y^{(1)}=[M_1]$. Учитывая (5), получаем

$$\operatorname{card} R(Y^{(1)}) < \operatorname{card} R(Y^{(0)}).$$

Если сагd $R(Y^{(1)})=\emptyset$, то $Y^{(1)}$ – дуга, и лемма 17 доказана. В противном случае повторим рассуждения, приведенные выше. Так как множество точек ветвления конечного дерева конечно, то найдется натуральное число $k \leq \operatorname{card} R(Y^0)$ такое, что $Y^{(k)}=[M_k]$ является дугой, где M_k – минимальное множество относительно $f^{n_1 \cdot \ldots \cdot n_k}$. Лемма 17 доказана.

Для доказательства следующего утверждения нам потребуются определения монотонного отображения и ретракции пространства на подмножество.

Определение 18 ([1, Том 2, §46, I]). Непрерывное отображение $f: X \to X$ конечного дерева X называется монотонным, если полный прообраз $f^{-1}(A)$ любого связного подмножества A из f(X) связен в X.

Определение 19 ([1, Том 1, §13, V]). Подмножество A пространства X называется ретрактом пространства X, если существует непрерывное отображение r, называемое ретракцией пространства X на множество A, такое, что r(x) = x для $x \in A$.

Следующая лемма устанавливает факт существования монотонной ретракции на любом конечном дереве.

Лемма 20 ([30]). Пусть $f: X \to X$ – непрерывное отображение конечного дерева X. Тогда для любого подмножества A в X существует монотонная ретракция $r: X \to A$.

Докажем еще одно вспомогательное утверждение.

Лемма 21. Пусть X – конечное дерево, а непрерывное отображение $f: X \to X$ имеет нулевую топологическую энтропию и бесконечное минимальное множество M, у которого [M] является дугой. Тогда отображение $f_{|M}$ топологически сопряжено двоичному счетчику τ_2 .

Доказательство. Положим I = [M]. Согласно лемме 14 выполнено включение: $E(I) \subset M$. Тогда из непрерывности f и равенства f(M) = M следует, что $I \subseteq f(I)$. Рассмотрим следующие случаи:

- (i) f(I) = I;
- (ii) $I \neq f(I)$.

Рассмотрим первый случай. Пусть $h:I\to [0;1]$ – любой гомеоморфизм дуги I на отрезок [0;1]. Положим

$$\varphi = h \circ f \circ h^{-1} : [0; 1] \to [0; 1].$$

Поскольку топологическая энтропия отображений f и h равна нулю, то топологическая энтропия отображения φ также равна 0. Более того, φ имеет бесконечное минимальное множество h(M). В силу теоремы 9 получаем, что отображение $\varphi_{|h(M)}$ топологически сопряжено двоичному счетчику τ_2 . Следовательно, отображение $f_{|M}$ также топологически сопряжено τ_2 , и в первом случае лемма 21 доказана.

Пусть имеет место второй случай. Тогда $I\subset f(I)$. В силу леммы 21 существует монотонная ретракция $r:X\to I$ конечного дерева X на дугу I. Положим

$$g = r \circ f : I \to I.$$

Из непрерывности f и r следует, что g – непрерывное отображение дуги I на себя. Поскольку монотонное отображение конечного дерева имеет нулевую топологическую энтропию (см. [7, теорема В]), то топологическая энтропия g равна 0. Так как f(M) = M, а r(x) = x для любой точки $x \in M \subset I$, то g имеет минимальное множество M, и $g_{|M} = f_{|M}$. В силу рассмотренного первого случая отображение $g_{|M}$ топологически сопряжено двоичному счетчику τ_2 . Поскольку $g_{|M} = f_{|M}$, то отображение $f_{|M}$ также топологически сопряжено τ_2 . Лемма 21 доказана.

Доказательство теоремы 1. Пусть $f: X \to X$ — непрерывное отображение конечного дерева X, у которого топологическая энтропия равна 0, и f имеет бесконечное минимальное множество M. Покажем, что любая точка x из M является почти периодической.

В силу леммы 17 найдутся натуральное число k и множество M_0 в M такие, что M_0 – минимальное множество относительно f^k , и $[M_0]$ является дугой. Согласно лемме 21

сужение $f_{|M_0}^k$ отображения f^k на M_0 топологически сопряжено двоичному счетчику. Следовательно, любая точка x из M_0 является почти периодической относительно f^k . Согласно определению почти периодической точки относительно f^k получаем, что для любой окрестности U(x) точки x существует натуральное число s такое, что

$$(f^k)^{si}(x) = f^{(ks)i}(x) \in U(x).$$

Отсюда следует, что $x \in AP(f)$.

Положим $M_i = f^i(M_0)$ для $1 \le i \le k-1$, $M = M_0 \cup \ldots \cup M_{k-1}$. Из определения почти периодической точки следует, что для любой точки x из M_0 имеем: $f^i(x) \in \operatorname{AP}(f^k)$ $(1 \le i \le k-1)$. Следовательно, $M_i \subset \operatorname{AP}(f^k)$ $(1 \le i \le k-1)$. Повторяя приведенные выше рассуждения, получаем, что $M_i \subset \operatorname{AP}(f)$ $(1 \le i \le k-1)$. Таким образом, любая точка из M является почти периодической относительно f. В силу теоремы 8 существует такая последовательность α , что отображение $f_{|M}$ топологически сопряжено счетчику τ_{α} . Утверждение 1) теоремы 1 доказано.

Докажем утверждение 2) теоремы 1. В силу утверждения 1) теоремы 1 существует последовательность $\alpha=(j_1,\ldots,j_i,\ldots)$ такая, что отображение $f_{|M}$ топологически сопряжено счетчику τ_{α} . Следовательно, отображение $f_{|M}^k$ топологически сопряжено отображению τ_{α}^k . Но M состоит из k инвариантных относительно f^k подмножеств M_i ($0 \le i \le k-1$), поэтому отображение $f_{|M_i}^k$ топологически сопряжено счетчику τ_{α}^k . С другой стороны, из доказательства утверждения 1) следует, что отображение $f_{|M_i}^k$ топологически сопряжено τ_2 для каждого числа $0 \le i \le k-1$. Поэтому из определения счетчика получаем, что существует $n \in \mathbb{N}$ такое, что $j_i = 2$ для всех $i \ge n+1$, т. е. последовательность α имеет вид (1). Теорема 1 доказана.

3. Доказательство теорем 2 и 3

Начнем с вспомогательных определений. Пусть n — натуральное число, и $n \geq 2$. Положим

$$Z_n = \{ z \in \mathbb{C} : z^n \in [0; 1] \}.$$
 (6)

При n=2 множество Z_2 есть отрезок [-1;1]. Если $n\geq 3$, то множество Z_n называется n-одом. Отметим, что n-од имеет единственную точку ветвления 0.

Доказательство теоремы 2 начнем со случая, когда конечное дерево является n-одом, $n \ge 3$ (для n = 2 см. теорему 9).

Лемма 22. Для любой последовательности α вида (n, 2, 2, ...), где $n \geq 2$ существует непрерывное отображение $f: Z_n \to Z_n$ п-ода Z_n такое, что топологическая энтропия f равна 0, и f имеет бесконечное минимальное множество M, на котором f топологически сопряжено счетчику τ_{α} .

Доказательство. Начнем с построения вспомогательных отображений.

- 1. Пусть $g(z) = \lambda^* z (1-z)$: $[0; 1] \to [0; 1]$ непрерывное отображение отрезка [0; 1], где $\lambda^* \approx 3,56995$ предельное значение параметров удвоения периодов (см., например, [11]). Отображение g имеет бесконечное минимальное множество M_0 , на котором g топологически сопряжено двоичному счетчику τ_2 (см, например, [31], $[2, гл. 1, \S 2]$). Топологическая энтропия g равна 0 $[2, гл. 3, \S 3]$.
- 2. Введем обозначение $I_j=[0;\,{\rm e}^{2\pi{\bf i}j/n}]$, где $0\leq j\leq n-1$. Тогда $Z_n=\bigcup_{j=0}^{n-1}I_j$. Определим вспомогательное отображение $\varphi_n:\,Z_n\to Z_n$, задающее поворот на угол $2\pi/n$ против часовой стрелки, т. е.

$$\varphi_n(z) = z \cdot e^{2\pi \mathbf{i}/n}, \text{ если } z \in Z_n.$$
 (7)

Тогда

$$\varphi_n(I_j) = \begin{cases} I_{j+1}, & \text{если } 0 \le j \le n-2; \\ I_0, & \text{если } j = n-1. \end{cases}$$
(8)

Отметим, что φ_n – гомеоморфизм, $\varphi_n(0) = 0$ для любого $n \in \mathbb{N}$, а любая точка $z \in Z_n \setminus \{0\}$ является периодической периода n.

- 3. Перейдем к построению отображения $f: Z_n \to Z_n$. Положим
- 1) $f(z) = \varphi_n \circ g(z)$, если $z \in I_0$;
- 2) $f(z) = \varphi_n(z)$, если $z \in \bigcup_{j=1}^{n-1} I_j$.

Изучим свойства отображения f.

- (i) Поскольку топологическая энтропия отображений g и φ_n равна 0, то топологическая энтропия f также равна нулю.
- (ii) Напомним, что отображение g имеет бесконечное минимальное множество M_0 такое, что отображение $g_{|M_0}$ топологически сопряжено двоичному счетчику τ_2 . Положим $M_j = f^j(M_0)$ для $1 \le j \le n-1$. Тогда отображение f имеет бесконечное минимальное множество

$$M = M_0 \cup \ldots \cup M_{n-1}$$
.

(iii) Покажем, что $f_{|M}$ топологически сопряжено счетчику τ_{α} , где $\alpha=(n,\,2,\,2,\ldots)$.

Из задания отображения f следует, что $f^n(M_j) = M_j$, и $f^n_{|M_j|}$ топологически сопряжено счетчику τ_2 ($0 \le j \le n-1$). Следовательно, относительно отображения f^n каждой точке $z \in M_j$ соответствует бесконечная последовательность $(k_1, \ldots, k_i, \ldots)$, где $k_i \in \{0, 1\}$. Доопределим каждую бесконечную последовательность следующим образом: если $z \in M_j$, $0 \le j \le n-1$, то данной точке будет соответствовать последовательность $(j, k_1, \ldots, k_i, \ldots)$. Тогда согласно (8) получаем, что f(z) соответствует последовательность $(j+1, k_1, \ldots, k_i, \ldots)$, если $0 \le j \le n-2$, и $(0, \tau_2(k_1, \ldots, k_i, \ldots))$, если j=n-1. Таким образом, отображение $f_{|M|}$ топологически сопряжено счетчику τ_α при $\alpha = (n, 2, 2, \ldots)$. Лемма 22 доказана.

Доказательство теоремы 2. Пусть последовательность α имеет вид $(j_1, \ldots, j_n, 2, 2, \ldots)$, где $j_i \geq 2$ для $1 \leq i \leq n$. В силу леммы 22 утверждение теоремы справедливо, если n = 1. Поэтому рассмотрим случай, когда $n \geq 2$.

I. Начнем с построения конечного дерева X. Для каждого числа j_i $(1 \le i \le n)$ положим

$$L_{j_i} = \bigcup_{k=0}^{j_i-1} \left[\frac{1}{2} + \frac{\sqrt{3}}{2} \mathbf{i}; \, \frac{k}{j_i - 1} \right]. \tag{9}$$

При $j_i=2$ множество L_{j_i} является дугой. Если $j_i\geq 3$, то L_{j_i} гомеоморфно j_i -оду, при этом $\frac{1}{2}+\frac{\sqrt{3}}{2}\mathbf{i}\in R(L_{j_i})$. Отметим, что diam $L_{j_i}=1$ $(1\leq i\leq n)$. Множество концевых точек континуума L_{j_i} имеет вид: $\left\{\frac{k}{j_i-1}\right\}_{k=0}^{j_i-1}$.

Для каждого числа $2 \le i \le n$ введем вспомогательную функцию

$$g_i(z) = \frac{z}{j_1 \cdot \dots \cdot j_{i-1}}, \text{ если } z \in L_{j_i}.$$

$$\tag{10}$$

Положим $\widetilde{L}_{j_i} = g_i(L_{j_i})$ для $2 \le i \le n$. Тогда из задания отображения $g_i(z)$ следует, что

$$\operatorname{diam} \widetilde{L}_{j_i} = \frac{1}{j_1 \cdot \dots \cdot j_{i-1}}.$$
 (11)

Точку $g_i\left(\frac{1}{2} + \frac{\sqrt{3}}{2}\mathbf{i}\right)$ обозначим через p_i $(2 \le i \le n)$.

Для построения конечного дерева X будем объединять L_{j_1} и копии множеств \widetilde{L}_{j_i} ($2 \le i \le n$) следующим образом:

- 1. Положим $Y_1 = L_{j_1}, \ a_{i_1} = \frac{i_1}{j_1 1}$ для $0 \le i_1 \le j_1 1$.
- 2. Для каждого числа $0 \leq i_1 \leq j_1 1$ определим отображение $\psi_{i_1}(z)$, задающее параллельный перенос множества \widetilde{L}_{j_2} на $\mathbb C$ таким образом, чтобы $\psi_{i_1}(p_2) = a_{i_1}$. Положим $G_{i_1} = \psi_{i_1}(\widetilde{L}_{j_2}), \quad a_{i_1,i_2} = \psi_{i_1}\left(g_2\left(\frac{i_2}{j_2-1}\right)\right)$ для $0 \leq i_s \leq j_s 1, \quad s \in \{1,2\}$. Так как $g_2\left(\frac{i_2}{j_2-1}\right) \in E(\widetilde{L}_{j_2})$ для любого числа $0 \leq i_2 \leq j_2 1$, то $a_{i_1,i_2} \in E(G_{i_1})$ $(0 \leq i_1 \leq j_1 1)$.

Пусть $Y_2 = \bigcup_{i_1=0}^{j_1-1} G_{i_1}$. Из построения Y_2 следует, что $Y_1 \cap Y_2 = \{a_{i_1}\}_{i_1=0}^{j_1-1}$. Согласно (11) выполнено условие: $G_{i_1} \cap G_{s_1} = \emptyset$, если $i_1 \neq s_1 \ (0 \leq i_1, \ s_1 \leq j_1 - 1)$. Поэтому $Y_1 \cup Y_2$ – конечное дерево, у которого $a_{i_1} \in R(Y_1 \cup Y_2)$, а $a_{i_1,i_2} \in E(Y_1 \cup Y_2)$, где $0 \leq i_s \leq j_s - 1$, $s \in \{1, 2\}$.

3. Для любого набора чисел (i_1, i_2) , где $0 \le i_s \le j_s - 1, s \in \{1, 2\}$, определим отображение $\psi_{i_1,i_2}(z)$, задающее параллельный перенос \widetilde{L}_{j_3} на $\mathbb C$ таким образом, чтобы

 $\psi_{i_1,i_2}(p_3) = a_{i_1,i_2}. \ \text{Положим} \ G_{i_1,i_2} = \psi_{i_1,i_2}(\widetilde{L}_{j_3}), \ a_{i_1,i_2,i_3} = \psi_{i_1,i_2}\left(g_3\left(\frac{i_3}{j_3-1}\right)\right), \ \text{где} \ 0 \leq i_s \leq j_s-1$ $(1 \leq s \leq 3). \ \text{Поскольку} \ g_3\left(\frac{i_3}{j_3-1}\right) \in E(\widetilde{L}_{j_3}), \ \text{то} \ a_{i_1,i_2,i_3} \in E(G_{i_1,i_2}). \ \text{В силу} \ (11) \ \text{имеем}$

$$G_{i_1,i_2} \cap G_{k_1,k_2} = \emptyset$$
, если $(i_1, i_2) \neq (k_1, k_2)$. (12)

Объединение всех G_{i_1,i_2} обозначим через Y_3 , где $0 \le i_s \le j_s - 1$, $s \in \{1, 2\}$. Из построения Y_3 и условия (12) следует, что $Y_1 \cup Y_2 \cup Y_3$ – конечное дерево.

- 4. Повторим рассуждения пункта 3 для $3 \le k \le n-2$. В результате мы построим конечное дерево $Y_1 \cup \ldots \cup Y_{n-1}$, причем $a_{i_1,\ldots,i_{n-1}} \in E(Y_1 \cup \ldots \cup Y_{n-1})$ $(0 \le i_s \le j_s-1,$ $1 \le s \le n-1)$.
 - 5. Опишем построение для k = n 1.

Для любого набора чисел (i_1,\ldots,i_{n-1}) , где $0\leq i_s\leq j_s-1,\ 1\leq s\leq n-1$, определим отображение $\psi_{i_1,\ldots,i_{n-1}}(z)$, задающее параллельный перенос \widetilde{L}_{j_n} на $\mathbb C$ таким образом, чтобы $\psi_{i_1,\ldots,i_{n-1}}(p_n)=a_{i_1,\ldots,i_{n-1}}$. Положим $G_{i_1,\ldots,i_{n-1}}=\psi_{i_1,\ldots,i_{n-1}}(\widetilde{L}_{j_n})$, где $0\leq i_s\leq j_s-1$, $1\leq s\leq n-1$. Обозначим через Y_n объединение всех $G_{i_1,\ldots,i_{n-1}}$. Из (11) следует, что

$$G_{i_1,\dots,i_{n-1}}\cap G_{k_1,\dots,k_{n-1}}=\emptyset,$$
 если $(i_1,\dots,i_{n-1})\neq (k_1,\dots,k_{n-1}).$

Кроме этого, $G_{i_1,\dots,i_{n-1}}\cap Y_{n-1}=\{a_{i_1,\dots,i_{n-1}}\}$. Поэтому $Y_1\cup\dots\cup Y_n$ – конечное дерево. Положим

$$X = Y_1 \cup \ldots \cup Y_n$$
.

Из построения дерева X следует, что card $R(X)=1+j_1+\ldots+j_{n-1}$. Концевыми точками дерева X являются точки $\psi_{i_1,\ldots,i_{n-1}}\left(g_n\left(\frac{i_n}{j_n-1}\right)\right)$, которые мы обозначим через a_{i_1,\ldots,i_n} , где $1\leq i_s\leq j_s-1,\,1\leq s\leq n$.

II. Перейдем к построению отображения $f: X \to X$.

Для любого числа $1 \le k \le n-1$ определим Z_{j_k} как в (6), отображение $\varphi_{j_k}: Z_{j_k} \to Z_{j_k}$ как в (7), и пусть отображение $f: Z_{j_n} \to Z_{j_n}$ будет таким, как в доказательстве леммы 22. Положим $\chi = f: Z_{j_n} \to Z_{j_n}$.

Разобьем задание отображения $f: X \to X$ на несколько шагов.

1) Пусть $h: Z_{j_1} \to Y_1$ – любой гомеоморфизм такой, что $h(Z_{j_1}) = Y_1$. Положим

$$f(z) = h \circ \varphi_{j_1} \circ h^{-1}(z)$$
, если $z \in Y_1$.

Тогда $p_1 \in \text{Fix}(f)$, а любая точка x из $Y_1 \setminus \{p_1\}$ – периодическая точка периода j_1 . При этом, для любой точки $a_{i_1} \in E(Y_1)$ выполнено условие: $f(a_{i_1}) = a_{i_1+1}$, если $0 \le i_1 \le j_1 - 2$,

и $f(a_{i_1}) = a_0$, если $i_1 = j_1 - 1$. Следовательно,

$$f([p_1; a_{i_1}]) = \begin{cases} [p_1; a_{i_1+1}], & \text{если } 0 \le i_1 \le j_1 - 2; \\ [p_1; a_0], & \text{если } i_1 = j_1 - 1. \end{cases}$$
 (13)

2) Пусть $2 \le k \le n-1$. Опишем задание отображения $f: Y_k \to Y_k$ на множестве Y_k . Пусть $h_{i_1,\dots,i_{k-1}}: Z_{j_k} \to G_{i_1,\dots,i_{k-1}}$ — произвольный гомеоморфизм такой, что $h_{i_1,\dots,i_{k-1}}(Z_{j_k}) = G_{i_1,\dots,i_{k-1}}$, где $0 \le i_s \le j_s-1$, $1 \le s \le k-1$. Определим $f: Y_k \to Y_k$ таким образом, чтобы для любой точки $z \in G_{i_1,\dots,i_{k-1}}$ выполнялось равенство:

$$f^{j_1 \cdot \dots \cdot j_{k-1}}(z) = h_{i_1, \dots, i_{k-1}} \circ \varphi_{j_k} \circ h^{-1}_{i_1, \dots, i_{k-1}}(z).$$

Тогда любая точка z из $Y_k \setminus \bigcup_{\substack{0 \leq i_s \leq j_s-1 \\ 1 < s < k}} \{a_{i_1,\dots,i_{k-1}}\}$ является периодической периода j_k от-

носительно $f^{j_1 \cdot \dots \cdot j_{k-1}}$, и, следовательно, периодической периода $j_1 \cdot \dots \cdot j_k$ относительно отображения f. Более того, для каждой точки $a_{i_1,\dots,i_k} \in E(Y_k)$ справедливо:

$$f^{j_1 \cdot \dots \cdot j_{k-1}}(a_{i_1, \dots, i_{k-1}, i_k}) = a_{i_1, \dots, i_{k-1}, (i_k+1)},$$
 если $0 \le i_k \le j_k - 2,$ $f^{j_1 \cdot \dots \cdot j_{k-1}}(a_{i_1, \dots, i_{k-1}, i_k}) = a_{i_1, \dots, i_{k-1}, 0},$ если $i_k = j_k - 1.$

Следовательно,

$$f^{j_1 \cdot \dots \cdot j_{k-1}}([p_1; a_{i_1, \dots, i_{k-1}, i_k}]) = \begin{cases} [p_1; a_{i_1, \dots, i_{k-1}, (i_k+1)}], & \text{если } 0 \le i_k \le j_k - 2; \\ [p_1; a_{i_1, \dots, i_{k-1}, 0}], & \text{если } i_k = j_k - 1. \end{cases}$$
(14)

3) Пусть $h_{i_1,\dots,i_{n-1}}: Z_{j_n} \to G_{i_1,\dots,i_{n-1}}$ – гомеоморфизм Z_{j_n} на $G_{i_1,\dots,i_{n-1}}$. Зададим отображение $f: Y_n \to Y_n$ таким образом, чтобы для любой точки $z \in G_{i_1,\dots,i_{n-1}} \subset Y_n$ выполнялось равенство:

$$f^{j_1 \cdot \dots \cdot j_{n-1}}(z) = h_{i_1, \dots, i_{n-1}} \circ \chi \circ h_{i_1, \dots, i_{n-1}}^{-1}(z).$$

Тогда $f^{j_1\cdot\ldots\cdot j_{n-1}}(G_{i_1,\ldots,i_{n-1}})=G_{i_1,\ldots,i_{n-1}}$ для любых $0\leq i_s\leq j_s-1,\ 1\leq s\leq n-1.$ Пусть $i_1=\ldots=i_{n-1}=0.$ Согласно лемме 22 отображение $f^{j_1\cdot\ldots\cdot j_{n-1}}$ имеет минимальное множество $M_0\subset G_{\underbrace{0,\ldots,0}_{n-1}}$ такое, что $f^{j_1\cdot\ldots\cdot j_{n-1}}_{|M_0}$ топологически сопряжено счетчику τ_{α_1} , где $\alpha_1=(j_n,2,2\ldots).$ Положим $M_j=f^j(M_0)$ для любого числа $1\leq j\leq j_1\cdot\ldots\cdot j_{n-1}-1.$ Тогда отображение f имеет минимальное множество

$$M = \bigcup_{j=0}^{j_1 \cdot \dots \cdot j_{n-1} - 1} M_j.$$

Учитывая (13) и (14), получаем, что отображение $f_{|M}$ топологически сопряжено отобра-

жению τ_{α} , где $\alpha = (j_1, \ldots, j_{n-1}, j_n, 2, 2 \ldots)$.

Отметим, что f непрерывное отображение, имеющее нулевую топологическую энтропию. Теорема 2 доказана.

Доказательство теоремы 3. Пусть $\alpha = (j_1, \ldots, j_n, \ldots)$ – любая последовательность натуральных чисел, где $j_n \geq 2$. Начнем с построения дендрита Y.

Пусть для любого числа $i \in \mathbb{N}$ определены континуумы L_{j_i} как в (9), для любого натурального числа $i \geq 2$ определены отображения $g_i(z)$ как в (10). Положим $\widetilde{L}_{j_i} = g_i(L_{j_i})$ для $i \geq 2$. Так же как в доказательстве теоремы 2 обозначим через p_i вершину \widetilde{L}_{j_i} для каждого числа $i \in \mathbb{N}$. Предположим, что построены множества Y_1, \ldots, Y_n как в п. І доказательства теоремы 2. Обозначим концевые точки множества Y_n через a_{i_1,\ldots,i_n} так же как в п. І доказательства теоремы 2.

Для любого набора чисел (i_1,\ldots,i_n) , где $0 \le i_s \le j_s-1$, $1 \le s \le n$, определим отображение $\psi_{i_1,\ldots,i_n}(z)$, задающее параллельный перенос $\widetilde{L}_{j_{n+1}}$ на $\mathbb C$ таким образом, чтобы $\psi_{i_1,\ldots,i_n}(p_{n+1})=a_{i_1,\ldots,i_n}$. Положим $G_{i_1,\ldots,i_n}=\psi_{i_1,\ldots,i_n}(\widetilde{L}_{j_{n+1}})$, где $0 \le i_s \le j_s-1$, $1 \le s \le n$. Из (11) следует, что

$$G_{i_1,\dots,i_n} \cap G_{k_1,\dots,k_n} = \emptyset, \text{ если } (i_1,\dots,i_n) \neq (k_1,\dots,k_n).$$
 (15)

Отметим, что $G_{i_1,\dots,i_n} \cap Y_n = \{a_{i_1,\dots,i_n}\}$ для любых $0 \le i_s \le j_s - 1$, где $1 \le s \le n$. Обозначим через Y_{n+1} объединение всех G_{i_1,\dots,i_n} . Применим принцип математической индукции. В результате построим последовательность множеств $\{Y_n\}_{n>1}$ таких, что

$$Y_n \cap Y_{n+1} = \bigcup_{\substack{0 \le i_s \le j_s - 1 \\ 1 \le s \le n}} \{a_{i_1, \dots, i_n}\}.$$
 (16)

Положим $Y = \bigcup_{n=1}^{+\infty} Y_n$. Из построения Y следует, что Y связно и замкнуто. В силу (11) получаем, что

diam
$$Y = 1 + \sum_{n=1}^{+\infty} \frac{1}{j_1 \cdot \dots \cdot j_n}$$
. (17)

Так как для каждого $n \ge 1$ выполнено неравенство: $j_n \ge 2$, то

$$\frac{1}{j_1 \cdot \dots \cdot j_n} \le \frac{1}{2^n}.$$

Следовательно, ряд в (17) сходится, и Y – ограничено. Таким образом, Y – континуум. Локальная связность Y следует из (11), поскольку

$$\lim_{n\to\infty} \operatorname{diam} G_{i_1,\dots,i_n} = 0.$$

Из (15) и (16) получаем, что континуум Y не содержит дуг, гомеоморфных окружности. Следовательно, Y – дендрит.

Пусть e — любая точка из E(Y), а $p_1=\frac{1}{2}+\frac{\sqrt{3}}{2}\mathbf{i}$. Согласно утверждению 1) леммы 5 существует единственная дуга $[p_1;e]$ в Y, соединяющая точки p_1 и e. Из построения Y следует существование последовательности точек $\{a_{i_1,\ldots,i_n}\}_{n\geq 1}\subset R(Y)$ $(0\leq i_s\leq j_s-1,1\leq s\leq n)$, принадлежащих дуге $[p_1;e]$ таких, что

$$\lim_{n \to +\infty} a_{i_1, \dots, i_n} = e.$$

В результате каждой концевой точке e из Y поставлена в соответствие бесконечная последовательность $(i_1, \ldots, i_n, \ldots)$, где $0 \le i_n \le j_n - 1$, $n \in \mathbb{N}$.

Построенный дендрит Y является обобщением дендрита Гехмана [32] (конструктивное построение дендрита Гехмана, отличное от [32], см. также в [7]). Отметим, что дендрит Y является топологическим пределом конечных деревьев $Y_1 \cup \ldots \cup Y_n$ при $n \to \infty$.

Перейдем к построению отображения $f: Y \to Y$. Идея построения отображения взята из [7, теорема C], где построены дендрит X и непрерывное отображение $f: X \to X$ для последовательности $\alpha = 2$.

Зададим отображение f на Y_1 как в п. 1) построения отображения f в доказательстве теоремы 2. На каждом множестве Y_n ($n \ge 2$) определим f как в п. 2) построения отображения f в доказательстве той же теоремы. В результате каждая точка z из $Y_n \setminus \bigcup_{\substack{0 \le i_s \le j_s-1 \\ 1 \le n}} \{a_{i_1,\dots,i_{n-1}}\}$ является периодической периода $j_1 \cdot \dots \cdot j_n$ для любого числа $n \in \mathbb{N}$.

Пусть $e \in E(Y)$, и $e = \lim_{n \to +\infty} a_{i_1,\dots,i_n}$, где $a_{i_1,\dots,i_n} \in R(Y)$. Так же как в [7, теорема C] положим

$$f(e) = \lim_{n \to +\infty} f(a_{i_1,\dots,i_n}).$$

Построенное отображение f непрерывно, и f(E(Y)) = E(Y). Более того, f – гомеоморфизм.

Покажем, что любая точка e из E(Y) является почти периодической относительно отображения f. Пусть U(e) – произвольная окрестность точки p. Из построения Y и условия (11) получаем, что существуют натуральные числа $n \geq 1, i_1, \ldots, i_n$, где $0 \leq i_s \leq j_s - 1$ ($1 \leq s \leq n$), такие, что $G_{i_1,\ldots,i_n} \subset U(e)$. Из построения отображения f следует равенство

$$f^{j_1 \cdot \dots \cdot j_n}(G_{i_1,\dots,i_n}) = G_{i_1,\dots,i_n}.$$

Положим $k_0 = j_1 \cdot \ldots \cdot j_n$. Тогда $f^{k_0 k}(e) \in U(e)$ для любого числа $k \in \mathbb{N}$, т.е. $e \in \operatorname{AP}(f)$. Согласно теореме 8 найдется последовательность α_1 такая, что отображение $f_{|E(Y)|}$ топологически сопряжено счетчику τ_{α_1} . С учетом (13) и (14) получаем, что $\alpha_1 = (j_1, \ldots, j_n, \ldots)$, т.е. $\alpha_1 = \alpha$. Теорема 3 доказана.

4. Доказательство теоремы 4

Начнем с необходимых определений.

Пусть непрерывное отображение $f: X \to X$ дендрита X имеет минимальное множество M. Минимальное множество M называется вполне минимальным, если для любого натурального числа $n \ge 1$ множество M является минимальным для f^n .

Следуя работе [10], регулярным периодическим разложением множества M будем называть набор множеств $M_0, \ldots, M_{k-1} \subset M$ таких, что $M = M_0 \cup \ldots \cup M_{k-1}$, $f(M_i) = M_{i+1 \pmod k}$, и каждое M_i является минимальным относительно f^k . Число k называется длиной M. Множество длин всех регулярных периодических разложений множества M называется uдеалом разложения и обозначается через $\mathrm{DI}(M)$.

Если при некотором натуральном $n \geq 2$ множество M не является минимальным относительно f^n , то M имеет регулярное периодическое разложение длины k, являющееся делителем числа n [4]. Отметим, что $\mathrm{DI}(M) = \{1\}$ тогда и только тогда, когда множество M является вполне минимальным [10].

Минимальное множество M будем называть *относительно вполне минимальным*, если существует регулярное периодическое разложение M_0, \ldots, M_{n-1} при $n \geq 2$ такое, что каждое множество M_i является вполне минимальным относительно отображения f^n .

Отметим, что минимальное множество M не является вполне минимальным и относительно вполне минимальным, если идеал разложения DI(M) бесконечен [10]. В этом случае M будем называть минимальным множеством с бесконечным идеалом.

Нам потребуются следующие вспомогательные утверждения.

Теорема 23 ([8]). Пусть X — дендрит со счетным числом концевых точек, а $f: X \to X$ — непрерывное отображение, имеющее бесконечное минимальное множество M, которое является вполне минимальным или относительно вполне минимальным. Тогда топологическая энтропия отображения f положительна.

Теорема 24 ([10, теорема 4.4]). Пусть $f: X \to X$ – минимальное отображение компактного метрического пространства X с бесконечным идеалом. Тогда существует такая последовательность α , что отображение f полусопряжено счетчику τ_{α} .

Доказательство теоремы 4. Так как дендрит X имеет счетное число концевых точек, то в силу теоремы 23 множество M является минимальным с бесконечным идеалом. Тогда согласно теореме 24 существует последовательность α такая, что отображение $f_{|M}$ полусопряжено счетчику τ_{α} . Теорема 4 доказана.

Список литературы

- [1] К. Куратовский, Топология, Т. 1, Мир, М., 1966; Т. 2, Мир, М., 1969.
- [2] А.Н. Шарковский, Ю.Л. Майстренко, Е.Ю. Романенко, *Разностные уравнения* и их приложения, Наук. думка, Киев, 1986.

[3] L. Alsedà, X. Ye, No division and the set of periods for tree maps, Ergodic Theory Dynam. Systems 15 (2), 221–237 (1995).

DOI: https://doi.org/10.1017/S0143385700008348

[4] X. Ye, D-function of a minimal set and an extension of Sharkovskii's theorem to minimal sets, Ergodic Theory Dynam. Systems 12 (2), 365–376 (1992).

DOI: https://doi.org/10.1017/S0143385700006817

- [5] L.Alsedà, X. Ye, Minimal sets of maps of Y, J. Math. Anal. Appl. 187 (1), 324–338 (1994).
 DOI: https://doi.org/10.1006/jmaa.1994.1359
- [6] B. Hasselblat, A. Katok, A first course in dynamics. With a panorama of recent developments, Cambridge University Press, New York, 2003.
- [7] Л.С. Ефремова, Е.Н. Махрова, Динамика монотонных отображений дендритов, Матем. сб. **192** (6), 15–30 (2001).

DOI: https://doi.org/10.4213/sm570

[8] E.N. Makhrova, Remarks on minimal sets on dendrites and finite graphs, J. Difference Equ. Appl. 29 (9–12), 1313–1322 (2023).

DOI: https://doi.org/10.1080/10236198.2023.2220417

[9] L. Block, J. Keesling, A characterization of adding machine maps, Topology Appl. **140** (2–3), 151–161 (2004).

DOI: https://doi.org/10.1016/j.topol.2003.07.006

[10] J. Banks, Regular periodic decompositions for topologically transitive maps, Ergodic Theory Dynam. Systems 17 (3), 505–529 (1997).

DOI: https://doi.org/10.1017/S0143385797069885

[11] М. Фейгенбаум, Универсальность в поведении нелинейных систем, УФН **141** (2), 343–374 (1983).

DOI: https://doi.org/10.3367/UFNr.0141.198310e.0343

- [12] Z. Nitecki, *Topological dynamics on the interval*, in: A. Katok, Ergodic theory and dynamical systems II, Progr. Math. **21**, Birkhäuser, Boston, MA, 1–73 (1982). https://doi.org/10.1007/978-1-4899-2689-0 1
- [13] A. Blokh, The "spectral" decomposition for one-dimensional maps, in: Dynam. Report. Expositions Dynam. Systems 4, 1–59 (1995).
 DOI: https://doi.org/10.1007/978-3-642-61215-2
- [14] F. Balibrea, R. Hric, L'. Snoha, Minimal sets on graphs and dendrites, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (7), 1721–1725 (2003).
 DOI: https://doi.org/10.1142/S0218127403007576
- [15] F. Balibrea, T. Downarowicz, R. Hric, L'. Snoha, V. Špitalský, Almost totally disconnected minimal systems, Ergodic Theory Dynam. Systems 29 (3), 737–766 (2009). DOI: https://doi.org/10.1017/S0143385708000540

- [16] H.-O. Peitgen, P.H. Richter, *The beauty of fractals. Images of complex dynamical systems*, Springer-Verlag, Berlin, 1986.
 - DOI: https://doi.org/10.1007/978-3-642-61717-1
- [17] S.J. Agronsky, J.G. Ceder, What sets can be ω -limit sets in E^n ?, Real Anal. Exchange 17 (1), 97–109 (1991/1992). DOI: https://doi.org/10.2307/44152199
- [18] F. Balibrea, J.L. García-Guirao, Continua with empty interior as ω -limit sets, Appl. Gen. Topol. **6** (2), 195–205 (2005).
- [19] L.S. Efremova, Example of the smooth skew product in the plane with the one-dimensional ramified continuum as the global attractor, in: European Conference on Iteration Theory 2010, ESAIM Proc. 36, EDP Sci., Les Ulis, 15–25 (2012).

 DOI: https://doi.org/10.1051/proc/201236002
- [20] L.S. Efremova, Ramified continua as global attractors of C¹-smooth self-maps of a cylinder close to skew products, J. Difference Equ. Appl. 29 (9–12), 1244–1274 (2023).
 DOI: https://doi.org/10.1080/10236198.2023.2204144
- [21] D. Drozdov, A. Tetenov, On the classification of fractal square dendrites, Adv. Theory Nonlinear Anal. Appl. 7 (3), 19–96 (2023).
 DOI: https://doi.org/10.17762/atnaa.v7.i3.276
- [22] В.Ж. Сакбаев, О.Г. Смолянов, Диффузия и квантовая динамика на графах, Докл. РАН, **451** (2), 141–145 (2013). DOI: https://doi.org/10.7868/s0869565213200061
- [23] Л.С. Ефремова, Е.Н. Махрова, *Одномерные динамические системы*, УМН **76** (5), 81–146 (2021).

 DOI: https://doi.org/10.4213/rm9998
- [24] Дж.Д.Биркгоф, *Динамические системы*, Регулярная и хаотическая динамика, Москва–Ижевск, 2002.
- [25] R. Munasinghe, Composants, unstable sets, and minimal sets of inverse limit spaces, Thesis (Ph.D.), University of Wyoming. ProQuest LLC, Ann Arbor, MI, 1992.
- [26] S. Kolyada, L'. Snoha, *Minimal dynamical systems*, Scholarpedia 4 (11), art. 5803. URL: https://www.scholarpedia.org/article/Minimal\$_\$dynamical\$_\$systems
- [27] R.L. Adler, A.G. Konheim, M.H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114, 309–319 (1965).
 DOI: https://doi.org/10.1090/S0002-9947-1965-0175106-9
- [28] Е.Н. Махрова, Структура дендритов со свойством существования периодических точек, Изв. вузов. Матем. (11), 41–45 (2011). URL: https://www.mathnet.ru/ivm8393

- [29] E.N. Makhrova, Remarks on the existence of periodic points for continuous maps on dendrites, Lobachevskii J. Math. 43 (7), 1711–1719 (2022).
 DOI: https://doi.org/10.1134/S1995080222100274
- [30] G.R. Gordon Jr., L. Lum, Monotone retracts and some characterizations of dendrites, Proc. Amer. Math. Soc. 59 (1), 156–158 (1976).
 DOI: https://doi.org/10.1090/S0002-9939-1976-0423317-X
- [31] Ю.С. Барковский, Г.М. Левин, О предельном канторовом множестве, УМН **35** (2), 201–202 (1980). URL: https://www.mathnet.ru/rus/rm3269
- [32] H.M. Gehman, Concerning the subsets of a plane continuous curve, Ann. Math. 27 (1), 29–46 (1925).
 DOI: https://doi.org/10.2307/1967832

Елена Николаевна Махрова

Нижегородский государственный университет им. Н.И. Лобачевского, пр-т Гагарина, д. 23, г. Нижний Новгород, 603022, Россия, e-mail: elena_makhrova@inbox.ru

VOLUME 3, ISSUE 3 PP. 110–135 (2025) UDC 517.938.5 MSC 37B40, 37B45, 37E25, 54F50

On minimal sets of continuous maps on one-dimensional continua

E.N. Makhrova

Abstract. Let X be a finite tree and let $f: X \to X$ be a continuous map with zero topological entropy and an infinite minimal set M. We show that the restriction of $f_{|M}$ of f to M is topologically conjugate to adding-machine τ_{α} , where $\alpha = (j_1, \ldots, j_n, 2, 2, \ldots)$ be the sequence for $j_i \geq 2$ if $1 \leq i \leq n$. We describe the topological structure of finite trees on which there exist continuous maps with zero topological entropy and an infinite minimal set M on which the map $f_{|M}$ is topologically conjugate to adding machine τ_{α} , where $\alpha = (j_1, \ldots, j_n, 2, 2, \ldots)$. At the same time, for any sequence $\alpha = (j_1, \ldots, j_i, \ldots)$, where $j_i \geq 2$ for all $i \geq 1$, there exist a dendrite X that is not a finite tree and a continuous map f with zero topological entropy and an infinite minimal set M on which the map f is topologically conjugate to adding machine τ_{α} .

We also show that for any sequence $\alpha = (j_1, \ldots, j_n, \ldots)$, where $j_i \geq 2$ for all $i \geq 1$, there exist a dendrite X that is not a finite tree and a continuous map f with zero topological entropy and an infinite minimal set M such that $f_{|M}$ is topologically conjugate to adding-machine τ_{α} .

Keywords: dendrite, finite tree, minimal set, adding-machine, topological entropy, almost periodic point, recurrent point.

DOI: 10.26907/2949-3919.2025.3.110-135

References

 K. Kuratowski, Topology. Vol. 1, Academic Press, New York-London, 1966; Academic Press, New York-London, 1968.

```
DOI: https://doi.org/10.1016/C2013-0-11022-7
https://doi.org/10.1016/C2013-0-11023-9
```

[2] A.N. Sharkovsky, Yu.L. Maistrenko, E.Yu. Romanenko, Difference equations and their applications, Kluwer Academic Publishers Group, Dordrecht, 1993.

DOI: https://doi.org/10.1007/978-94-011-1763-0

Acknowledgements. This research is supported by Russian Science Foundation (RSF) under grant 24-21-00242, https://rscf.ru/project/24-21-00242/.

[3] L. Alsedà, X. Ye, No division and the set of periods for tree maps, Ergodic Theory Dynam. Systems 15 (2), 221–237 (1995).

DOI: https://doi.org/10.1017/S0143385700008348

[4] X. Ye, D-function of a minimal set and an extension of Sharkovskii's theorem to minimal sets, Ergodic Theory Dynam. Systems 12 (2), 365–376 (1992).

DOI: https://doi.org/10.1017/S0143385700006817

- [5] L.Alsedà, X. Ye, Minimal sets of maps of Y, J. Math. Anal. Appl. 187 (1), 324–338 (1994).
 DOI: https://doi.org/10.1006/jmaa.1994.1359
- [6] B. Hasselblat, A. Katok, A first course in dynamics. With a panorama of recent developments, Cambridge University Press, New York, 2003.
- [7] L.S. Efremova, E.N. Makhrova, *The dynamics of monotone maps of dendrites*, Sb. Math. **192** (6), 807–821 (2001).

DOI: https://doi.org/10.1070/SM2001v192n06ABEH000570

[8] E.N. Makhrova, Remarks on minimal sets on dendrites and finite graphs, J. Difference Equ. Appl. 29 (9–12), 1313–1322 (2023).

DOI: https://doi.org/10.1080/10236198.2023.2220417

[9] L. Block, J. Keesling, A characterization of adding machine maps, Topology Appl. **140** (2–3), 151–161 (2004).

DOI: https://doi.org/10.1016/j.topol.2003.07.006

[10] J. Banks, Regular periodic decompositions for topologically transitive maps, Ergodic Theory Dynam. Systems 17 (3), 505–529 (1997).

DOI: https://doi.org/10.1017/S0143385797069885

[11] M.J. Feigenbaum, Universal behavior in nonlinear systems, Los Alamos Sci. 1 (1), 4–27 (1980).

DOI: https://doi.org/10.1016/0167-2789(83)90112-4

- [12] Z. Nitecki, *Topological dynamics on the interval*, in: A. Katok, Ergodic theory and dynamical systems II, Progr. Math. **21**, Birkhäuser, Boston, MA, 1–73 (1982). https://doi.org/10.1007/978-1-4899-2689-0 1
- [13] A. Blokh, The "spectral" decomposition for one-dimensional maps, in: Dynam. Report. Expositions Dynam. Systems 4, 1–59 (1995).
 DOI: https://doi.org/10.1007/978-3-642-61215-2
- [14] F. Balibrea, R. Hric, L'. Snoha, Minimal sets on graphs and dendrites, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (7), 1721–1725 (2003).
 DOI: https://doi.org/10.1142/S0218127403007576
- [15] F. Balibrea, T. Downarowicz, R. Hric, L'. Snoha, V. Špitalský, Almost totally disconnected minimal systems, Ergodic Theory Dynam. Systems 29 (3), 737–766 (2009). DOI: https://doi.org/10.1017/S0143385708000540

- [16] H.-O. Peitgen, P.H. Richter, *The beauty of fractals. Images of complex dynamical systems*, Springer-Verlag, Berlin, 1986.
 - DOI: https://doi.org/10.1007/978-3-642-61717-1
- [17] S.J. Agronsky, J.G. Ceder, What sets can be ω -limit sets in E^n ?, Real Anal. Exchange 17 (1), 97–109 (1991/1992). DOI: https://doi.org/10.2307/44152199
- [18] F. Balibrea, J.L. García-Guirao, Continua with empty interior as ω -limit sets, Appl. Gen. Topol. **6** (2), 195–205 (2005).
- [19] L.S. Efremova, Example of the smooth skew product in the plane with the one-dimensional ramified continuum as the global attractor, in: European Conference on Iteration Theory 2010, ESAIM Proc. 36, EDP Sci., Les Ulis, 15–25 (2012).

 DOI: https://doi.org/10.1051/proc/201236002
- [20] L.S. Efremova, Ramified continua as global attractors of C¹-smooth self-maps of a cylinder close to skew products, J. Difference Equ. Appl. 29 (9–12), 1244–1274 (2023).
 DOI: https://doi.org/10.1080/10236198.2023.2204144
- [21] D. Drozdov, A. Tetenov, On the classification of fractal square dendrites, Adv. Theory Nonlinear Anal. Appl. 7 (3), 19–96 (2023).
 DOI: https://doi.org/10.17762/atnaa.v7.i3.276
- [22] V.Zh. Sakbaev, O.G. Smolyanov, Diffusion and quantum dynamics on graphs, Dokl. Math. 88 (1), 404–408 (2013).
 DOI: https://doi.org/10.1134/S1064562413040108
- [23] L.S. Efremova, E.N. Makhrova, One-dimensional dynamical systems, Russian Math. Surveys 76 (5), 821–881 (2021).
 DOI: https://doi.org/10.1070/RM9998
- [24] G.D. Birkhoff, Dynamical systems, AMS, New York, 1927.
- [25] R. Munasinghe, Composants, unstable sets, and minimal sets of inverse limit spaces, Thesis (Ph.D.), University of Wyoming. ProQuest LLC, Ann Arbor, MI, 1992.
- [26] S. Kolyada, L'. Snoha, *Minimal dynamical systems*, Scholarpedia 4 (11), art. 5803. URL: https://www.scholarpedia.org/article/Minimal\$_\$dynamical\$_\$systems
- [27] R.L. Adler, A.G. Konheim, M.H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114, 309–319 (1965).
 DOI: https://doi.org/10.1090/S0002-9947-1965-0175106-9
- [28] E.N. Makhrova, The structure of dendrites with the periodic point property, Russian Math. (Iz. VUZ) 55 (11) 33–37 (2011).
 DOI: https://doi.org/10.3103/S1066369X11110053

- [29] E.N. Makhrova, Remarks on the existence of periodic points for continuous maps on dendrites, Lobachevskii J. Math. 43 (7), 1711–1719 (2022).
 - DOI: https://doi.org/10.1134/S1995080222100274
- [30] G.R. Gordon Jr., L. Lum, Monotone retracts and some characterizations of dendrites, Proc. Amer. Math. Soc. **59** (1), 156–158 (1976).
 - DOI: https://doi.org/10.1090/S0002-9939-1976-0423317-X
- [31] Yu.S. Barkovskii, G.M. Levin, *A Cantor limit set*, Russ. Math. Surveys **35**(2), 235–236 (1980).
 - DOI: https://doi.org/10.1070/RM1980v035n02ABEH001644
- [32] H.M. Gehman, Concerning the subsets of a plane continuous curve, Ann. Math. 27 (1), 29–46 (1925).

DOI: https://doi.org/10.2307/1967832

Elena Nikolaevna Makhrova

Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603022, Russia, *E-mail:* elena_makhrova@inbox.ru