On topological classification of flows with heteroclinic curves on four-dimensional manifolds
https://doi.org/10.26907/2949-3919.2025.3.20-42
Abstract
We obtain a topological classification of smooth structurally stable flows on four-dimensional closed manifolds whose wandering set contains isolated trajectories connecting saddle equilibria (heteroclinic curves). For dimensional reasons, heteroclinic curves of such flows belong to the intersection of invariant manifolds of saddles of neighboring Morse indices. We assume that the non-wandering set of the flows under consideration consists of exactly one source, one sink, and an arbitrary number of saddles, the dimension of whose unstable manifolds is equal to 1 and 2. We obtain necessary and sufficient conditions for the topological equivalence of such flows and present an algorithm for realizing a representative in each class of topological equivalence. In particular, we show that in the considered class of flows on the sphere S 4 there exists exactly one class of topological equivalence of flows with a single heteroclinic curve and a countable set of topologically nonequivalent flows with three heteroclinic curves. The latter result contrasts with the three-dimensional situation, where for a similar class of flows there are only finitely many equivalence classes for each number of heteroclinic curves.
Keywords
About the Author
E. Ya. GurevichRussian Federation
Elena Yakovlevna Gurevich
25/12 Bolshaya Pecherskaya str., Nizhny Novgorod 603155
References
1. V.Z. Grines, E.Ya. Gurevich, E.V. Zhuzhoma, O.V. Pochinka, Classification of Morse– Smale systems and topological structure of the underlying manifolds, Russian Math. Surveys 74 (1), 37–110 (2019). DOI: https://doi.org/10.1070/RM9855
2. V.Z. Grines, T.V. Medvedev, O.V. Pochinka, Dynamical systems on 2- and 3-manifolds, Springer, Switzerland, 2016. DOI: https://doi.org/10.1007/978-3-319-44847-3
3. V.Z. Grines, E.Ya. Gurevich, Problems of topological classification of multidimensional Morse–Smale systems, Izhevsk Institute of Computer Research, Izhevsk, 2022 [in Russian]. URL: https://publications.hse.ru/books/804652432
4. E.V. Zhuzhoma, V.S. Medvedev, Continuous Morse–Smale flows with three equilibrium positions, Sb. Math. 207 (5), 702–723 (2016). DOI: https://doi.org/10.1070/SM8565
5. V.Z. Grines, E.Ya. Gurevich, On classification of Morse–Smale flows on projective-like manifolds, Izv. Math. 86 (5), 876–902 (2022). DOI: https://doi.org/10.4213/im9197e
6. V.Z. Grines, E.Ya. Gurevich, A combinatorial invariant of gradient-like flows on a connected sum of S n−1 × S 1 , Sb. Math. 214 (5) (2023), 703–731 (2023). DOI: https://doi.org/10.4213/sm9761e
7. E.Ya. Gurevich, I.A. Saraev, Kirby diagram of polar flows on four-dimensional manifolds, Math. Notes 116 (1), 40–57 (2024). DOI: https://doi.org/10.1134/S0001434624070046
8. E.Ya. Gurevich, I.A. Saraev, Topological classification of polar flows on four-dimensional manifolds, Regul. Chaotic Dyn. 30 (2), 254–278 (2025). DOI: https://doi.org/10.1134/S1560354725020054
9. M.H. Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (3), 357–453 (1982). DOI: https://doi.org/10.4310/jdg/1214437136
10. V.V. Prasolov, Elements of homology theory, AMS, Providence, RI, 2007. [11] S. Smale, On gradient dynamical systems, Ann. Math. 74 (1), 199–206 (1961). URL: https://doi.org/10.2307/1970311
11. K.R. Meyer, Energy functions for Morse Smale systems, Amer. J. Math. 90, 1031–1040 (1968). DOI: https://doi.org/10.2307/2373287
12. D. Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish, Inc., Houston, TX, 1990.
13. V.V. Prasolov, A.B. Sosinsky, Knots, links, braids and 3-manifolds. An introduction to the new invariants in low-dimensional topology, AMS, Providence, RI, 1997. DOI: https://doi.org/10.1090/mmono/154
14. C.McA. Gordon, J. Luecke, Knots are determined by their complements, J. AMS 2 (2), 371–415 (1989). DOI: https://doi.org/10.2307/1990979
15. M. Morse, The existence of polar non-degenerate functions on differentiable manifolds, Ann. Math. 71 (2), 352–383 (1960). DOI: https://doi.org/10.2307/1970086
16. K. Rourke, B. Sanderson, Introduction to piecewise linear topology, Springer-Verlag, New York, 1972. DOI: https://doi.org/10.1007/978-3-642-81735-9
17. F. Laudenbach, V. Po´enaru, A note on 4-dimensional handlebodies, Bull. Soc. Math. France 100, 337–344 (1972). DOI: https://doi.org/10.24033/bsmf.1741
18. R. Kirby, A calculus for framed links in S 3 , Invent. Math. 45 (1), 35–56 (1978). DOI: https://doi.org/10.1007/BF01406222
19. E.C. de S´a, A link calculus for 4-manifolds, in: Topology of low-dimensional manifolds, Springer, Berlin, Heidelberg, 16–30 (1979). DOI: https://doi.org/10.1007/BFb0063185
20. S. Smale, Differentiable dynamical systems, Bull. AMS 73 (6), 747–817 (1967). DOI: https://doi.org/10.1090/S0002-9904-1967-11798-1
21. R.S. Palais, Ch.-L. Terng, Critical point theory and submanifold geometry, Springer-Verlag, Berlin, 1988. DOI: https://doi.org/10.1007/BFb0087442
22. H. Seifert, W. Threlfall, Seifert and Threlfall: a textbook of topology, Academic Press, New York-London, 1980.
23. J. Palis Jr., W. De Melo, Geometric theory of dynamical systems. An introduction, SpringerVerlag, New York-Berlin, 1982 DOI: https://doi.org/10.1007/978-1-4612-5703-5
24. R.H. Bing, Locally tame sets are tame, Ann. Math. 59 (1), 145–158 (1954). DOI: https://doi.org/10.2307/1969836
Review
For citations:
Gurevich E.Ya. On topological classification of flows with heteroclinic curves on four-dimensional manifolds. Mathematics and Theoretical Computer Science. 2025;3(3):20-42. (In Russ.) https://doi.org/10.26907/2949-3919.2025.3.20-42








