Hecke symmetries, associated with Artin–Schelter regular algebras of type E and H
Abstract
In this paper all Hecke symmetries are given for which the corresponding algebra S(V,R) is Artin-Schelter regular of type E. Also we prove that there exist no Hecke symmetries with regular algebra S(V,R) of type H
About the Author
N. A. ShishmarovRussian Federation
18 Kremlyovskaya str., Kazan 420008
References
1. D.I. Gurevich, Algebraic aspects of the quantum Yang-–Baxter equation, Leningrad Math. J. 2 (4), 801–828 (1991).
2. P.H. Hai, Poincare series of quantum spaces associated to Hecke operators, Acta Math. Vietnam 24 (2), 235–246 (1999). DOI: https://doi.org/10.48550/arXiv.q-alg/9711020
3. M. Artin, W.F. Schelter, Graded algebras of global dimension 3, Adv. Math. 66 (2), 171–216 (1987). DOI: https://doi.org/10.1016/0001-8708(87)90034-X
4. M. Artin, J.Tate, M.Van den Bergh, Some algebras associated to automorphisms of elliptic curves, ”The Grothendieck Festschrift, V. I”, Birkh¨auser Boston, Boston MA, 33–85 (1990). DOI: https://doi.org/10.1007/978-0-8176-4574-8_3
5. M. Matsuno, A complete classification of 3-dimensional quadratic AS-regular algebras of type EC, Can. Math. Bull. 64 (1), 123–141 (2021). DOI: https://doi.org/10.4153/S0008439520000302
6. A. Itaba, M. Matsuno, AS-regularity of geometric algebras of plane cubic curves, J. Aust. Math. Soc. 112 (2), 193–217 (2022). DOI: https://doi.org/10.1017/S1446788721000070
7. H.Ewen, O. Ogievetsky, Classification of the GL(3) quantum matrix groups, 1994. DOI: https://doi.org/10.48550/arXiv.q-alg/9412009
8. S. Skryabin, Hecke symmetries: an overview of Frobenius properties, 2021. DOI: https://doi.org/10.48550/arXiv.2111.14169
9. A. Bj¨orner, F. Brenti, Combinatorics of Coxeter groups, Springer, New York, 2005. DOI: https://doi.org/10.1007/3-540-27596-7
10. A.Polishchuk, L.Positselski, Quadratic algebras, Amer. Math. Soc., Provedence R.I., 2005. DOI: http://doi.org/10.1090/ulect/037
11. A.I. Bondal, A.E.Polishchuk, Homological properties of associative algebras: the method of helices, Russian Acad. Sci. Izv. Math. 42 (2), 219–260 (1994). DOI: https://doi.org/10.1070/IM1994v042n02ABEH001536
Review
For citations:
Shishmarov N.A. Hecke symmetries, associated with Artin–Schelter regular algebras of type E and H. Mathematics and Theoretical Computer Science. 2023;1(2):62-85. (In Russ.)