Preview

Mathematics and Theoretical Computer Science

Advanced search

Hecke symmetries, associated with Artin–Schelter regular algebras of type E and H

Abstract

In this paper all Hecke symmetries are given for which the corresponding algebra S(V,R) is Artin-Schelter regular of type E. Also we prove that there exist no Hecke symmetries with regular algebra S(V,R) of type H

About the Author

N. A. Shishmarov
Kazan Federal University, Lobachevskii Institute of Mathematics and Mechanics
Russian Federation

18 Kremlyovskaya str., Kazan 420008



References

1. D.I. Gurevich, Algebraic aspects of the quantum Yang-–Baxter equation, Leningrad Math. J. 2 (4), 801–828 (1991).

2. P.H. Hai, Poincare series of quantum spaces associated to Hecke operators, Acta Math. Vietnam 24 (2), 235–246 (1999). DOI: https://doi.org/10.48550/arXiv.q-alg/9711020

3. M. Artin, W.F. Schelter, Graded algebras of global dimension 3, Adv. Math. 66 (2), 171–216 (1987). DOI: https://doi.org/10.1016/0001-8708(87)90034-X

4. M. Artin, J.Tate, M.Van den Bergh, Some algebras associated to automorphisms of elliptic curves, ”The Grothendieck Festschrift, V. I”, Birkh¨auser Boston, Boston MA, 33–85 (1990). DOI: https://doi.org/10.1007/978-0-8176-4574-8_3

5. M. Matsuno, A complete classification of 3-dimensional quadratic AS-regular algebras of type EC, Can. Math. Bull. 64 (1), 123–141 (2021). DOI: https://doi.org/10.4153/S0008439520000302

6. A. Itaba, M. Matsuno, AS-regularity of geometric algebras of plane cubic curves, J. Aust. Math. Soc. 112 (2), 193–217 (2022). DOI: https://doi.org/10.1017/S1446788721000070

7. H.Ewen, O. Ogievetsky, Classification of the GL(3) quantum matrix groups, 1994. DOI: https://doi.org/10.48550/arXiv.q-alg/9412009

8. S. Skryabin, Hecke symmetries: an overview of Frobenius properties, 2021. DOI: https://doi.org/10.48550/arXiv.2111.14169

9. A. Bj¨orner, F. Brenti, Combinatorics of Coxeter groups, Springer, New York, 2005. DOI: https://doi.org/10.1007/3-540-27596-7

10. A.Polishchuk, L.Positselski, Quadratic algebras, Amer. Math. Soc., Provedence R.I., 2005. DOI: http://doi.org/10.1090/ulect/037

11. A.I. Bondal, A.E.Polishchuk, Homological properties of associative algebras: the method of helices, Russian Acad. Sci. Izv. Math. 42 (2), 219–260 (1994). DOI: https://doi.org/10.1070/IM1994v042n02ABEH001536


Review

For citations:


Shishmarov N.A. Hecke symmetries, associated with Artin–Schelter regular algebras of type E and H. Mathematics and Theoretical Computer Science. 2023;1(2):62-85. (In Russ.)

Views: 121


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3919 (Online)