Localization of the matrix spectrum and Lyapunov type equations
https://doi.org/10.26907/2949-3919.2023.4.49-66
Abstract
The problems on the location of the matrix spectrum inside or outside domains bounded by ellipses or parabolas are studied. Special Lyapunov-type equations are connected with these problems. Theorems about the unique solvability of such equations are proved. Conditions for perturbations of matrix entries are obtained, which guarantee that the spectra of the perturbed matrices belong to the specified domains as well.
Keywords
About the Authors
G. V. DemidenkoRussian Federation
Gennadii Vladimirovich Demidenko
4 Acad. Koptyug Avе., Novosibirsk 630090, Russia;
1 Pirogov str., Novosibirsk 630090, Russia
Zongshun Wang
Russian Federation
Wang Zongshun
1 Pirogov str., Novosibirsk 630090, Russia
References
1. Ju.L. Daleckii, M.G. Krein, Stability of solutions of differential equations in Banach space, AMS, Providence, 1974.
2. S.K. Godunov, Modern aspects of linear algebra, Nauchn. kn., Novosibirsk, 1997 [in Russian].
3. A.G. Mazko, Localization of the spectrum and stability of dynamical systems, Trudy Instituta matematiki NAN Ukrainy, V. 28, Institute of Mathematics of the NAS of Ukraine, Kiev, 1999 [in Russian].
4. A.Ya. Bulgakov, G.V. Demidenko, A new criterion for a matrix spectrum to belong to the closed unit disk and applications to stability theory, Sib. Zh. Ind. Mat. 3 (1), 47–56 (2000) [in Russian]. URL: https://www.mathnet.ru/rus/sjim84
5. G.V. Demidenko, Matrix equations. Textbook, NSU, Novosibirsk, 2009 [in Russian].
6. G. Demidenko, On a functional approach to spectral problems of linear algebra, Selcuk J. Appl. Math. 2 (2), 39–52 (2001).
7. A. Bulgak, G. Demidenko, I. Matveeva, On location of the matrix spectrum inside an ellipse, Selcuk J. Appl. Math. 4 (1), 25–41 (2003).
8. G.V. Demidenko, V.S. Prokhorov, On location of the matrix spectrum with respect to a parabola, Sib. Adv. Math. 33 (3), 190–199 (2023). DOI: https://doi.org/10.1134/S1055134423030033
9. M. Sadkane, A. Touhami, On modifi ations to the spectral dichotomy algorithm, Numer. Funct. Anal. Optim. 34 (7), 791–817 (2013). DOI: https://doi.org/10.1080/01630563.2012.721152
10. E.A. Biberdorf, M.A. Blinova, N.I. Popova, Modifi ations of the dichotomy method of a matrix spectrum and their application to stability tasks, Num. Anal. Appl. 11 (2), 108– 120 (2018). DOI: https://doi.org/10.1134/S1995423918020027
11. E.A. Biberdorf, Development of the matrix spectrum dichotomy method, in: Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov’s Legacy – A Liber Amicorum to Professor Godunov (eds.: G.V. Demidenko, E. Romenski, E. Toro, M. Dumbser), Springer Nature, Cham, Switzerland, 37–43 (2020). DOI: https://doi.org/10.1007/978-3-030-38870-6_6
12. S. Traore, M. Dosso, Spectral dichotomy methods of a matrix with respect to the general equation of the parabola, European J. Pure Appl. Math. 15 (2), 681–725 (2022). DOI: https://doi.org/10.29020/nybg.ejpam.v15i2.4348
Review
For citations:
Demidenko G.V., Wang Z. Localization of the matrix spectrum and Lyapunov type equations. Mathematics and Theoretical Computer Science. 2023;1(4):49-66. (In Russ.) https://doi.org/10.26907/2949-3919.2023.4.49-66