Preview

Mathematics and Theoretical Computer Science

Advanced search

On classes of symmetric and asymmetric concrete logics

https://doi.org/10.26907/2949-3919.2024.1.16-30

Abstract

We refined the axiomatics of asymmetric logics. For logics X(km, k) of family subsets of the km-element set X, which cardinal numbers are multiples of k we completely described the cases in which X(km, k) a) is symmetric or b) is asymmetric. For an infinite set Ω and a natural number n ≥ 2 we constructed the concrete logics EΩn and completely described the cases in which these logics are asymmetric. For asymmetric logics E we determine when both the set A ∈ E and its complement Ac are atoms of the logic E. Let a symmetric logic E of a finite set Ω be not a Boolean algebra, and let A be an algebra of subsets from Ω, and assume that E ⊂ A. Then there exists a measure on E, that does not admit an extension to a measure on A.

About the Authors

A. M. Bikchentaev
Kazan Federal University, Volga Region Mathematical Center
Russian Federation

Airat Midkhatovich Bikchentaev

18 Kremlyovskaya str., Kazan 420008
 



M. Mohamed Ali
Kazan Federal University, Volga Region Mathematical Center
Russian Federation

Muntadher Mohamed Ali 

18 Kremlyovskaya str., Kazan 420008 



K. Fawwaz
Kazan Federal University, Volga Region Mathematical Center
Russian Federation

Khattab Fawwaz 

18 Kremlyovskaya str., Kazan 420008 



References

1. A.N. Sherstnev, On Boolean logics, Uchenye Zapiski Kazanskogo Universiteta, 128 (2) Kazan Univ., Kazan, 1968, 48–62 [in Russian]. DOI: https://www.mathnet.ru/eng/uzku/v128/i2/p48

2. S.P. Gudder, Stochastic methods in quantum mechanics, North-Holland Series in Probability and Applied Mathematics. North-Holland, New York–Oxford, 1979.

3. S.P. Gudder, An extension of classical measure theory, SIAM Rev. 26 (1), 71–89 (1984). DOI: https://doi.org/10.1137/1026002

4. G.D. Lugovaya, A.N. Sherstnev, Functional analysis: special courses, Editorial URSS, Moscow, 2019 [in Russian].

5. P.G. Ovchinnikov, Galois correspondence associated with the extension of charges on the σ-class of subsets of a finite set, Russian Math. (Iz. VUZ), 38 (5), 34–38 (1994). URL: https://www.mathnet.ru/eng/ivm/y1994/i5/p36

6. P.G. Ovchinnkov, F.F. Sultanbekov, Finite concrete logics: their structure and measures on them, Internat. J. Theoret. Phys. 37 (2), 147–153 (1998). DOI: https://doi.org/10.1023/A:1026681710332

7. P.G. Ovchinnkov, Measure on finite concrete logics, Proc. Amer. Math. Soc. 127 (7), 1957– 1966 (1999). URL: https://www.ams.org/journals/proc/1999-127-07/S0002-9939-99-04761-9

8. P. Pt´ak, Concrete quantum logics, Internat. J. Theoret. Phys. 39 (3), 827–837 (2000). DOI: https://doi.org/10.1023/A:1003626929648

9. A.M. Bikchentaev, States on symmetric logics: conditional probability and independence, Lobachevskii J. Math. 30 (2), 101–106 (2009). DOI: https://doi.org/10.1134/S1995080209020024

10. A. Bikchentaev, R. Yakushev, States on symmetric logics: conditional probability and independence. II, Internat. J. Theoret. Phys. 53 (2), 397–408 (2014). DOI: https://doi.org/10.1007/s10773-013-1824-8

11. A. Bikchentaev, M. Navara, R. Yakushev, Quantum logics of idempotents of unital rings, Internat. J. Theoret. Phys. 54 (6), 1987–2000 (2015). DOI: https://doi.org/10.1007/s10773-014-2405-1

12. A. De Simone, M. Navara, P. Pt´ak, States on systems of sets that are closed under symmetric difference, Math. Nachr. 288 (17–18), 1995–2000 (2015). DOI: https://doi.org/10.1002/mana.201500029

13. A. Bikchentaev, M. Navara, States on symmetric logics: extensions, Math. Slovaca 66 (2), 359–366 (2016). DOI: https://doi.org/10.1515/ms-2015-0141

14. V. Vor´a˘cek, P. Pt´ak, A symmetric-difference-closed orthomodular lattice that is stateless, Order 40 (2), 397–402 (2023). DOI: https://doi.org/10.1007/s11083-022-09621-7

15. R.E. Prather, Generating the k-subsets of an n-set, Amer. Math. Monthly 87 (9), 740–743 (1980). DOI: https://doi.org/10.2307/2321866

16. F.F. Sultanbekov, Charges and automorphisms of a class of finite set logics, Constructive theory of functions and functional analysis (8), 57–68, Kazan. Gos. Univ., Kazan, 1992 [in Russian]. URL: https://www.mathnet.ru/eng/kuktf/v8/p57


Review

For citations:


Bikchentaev A.M., Mohamed Ali M., Fawwaz K. On classes of symmetric and asymmetric concrete logics. Mathematics and Theoretical Computer Science. 2024;2(1):16-30. (In Russ.) https://doi.org/10.26907/2949-3919.2024.1.16-30

Views: 237


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3919 (Online)