On the extension of singular linear infinite-dimensional Hamiltonian flows
https://doi.org/10.26907/2949-3919.2024.1.31-54
Abstract
We study the phenomenon of phase trajectories of a Hamiltonian system going to infinity in a finite time, the phase space of which is a separable Hilbert space. It is shown that if the Hamiltonian is a densely defined quadratic form on the phase space, which is not majorized either from below or from above by the quadratic form of the Hilbert norm, then the phase trajectories allow going to infinity in a finite time. To describe the phase flow of such Hamiltonian systems, an extended phase space is introduced, which is a locally convex space to which the Hamiltonian function, trajectories of the Hamiltonian system, and the symplectic form defined on the original Hilbert space can be extended. Flowinvariant measures on extended space are also studied. The properties of the Koopman unitary representation of the extended phase flow in the Hilbert space of functions that are quadratically integrable with respect to an invariant measure are investigated.
About the Authors
V. A. GlazatovRussian Federation
Vladimir Andreevich Glazatov
4 Miysskaya sq., Moscow 125047
V. Z. Sakbaev
Russian Federation
Vsevolod Zhanovich Sakbaev
4 Miysskaya sq., Moscow 125047
References
1. J. Bourgain, Periodic nonlinear Schrodinger equation and invariant measures, Comm. Math. Phys. 166, 1–26 (1994). DOI: https://doi.org/10.1007/BF02099299
2. P. Chernoff, J. Marsden, Properties of infinite dimensional Hamiltonian systems, Lecture Notes Math. 425, Springer-Verlag Berlin, Heidelberg, 1974. DOI: https://doi.org/10.1007/bfb0073665
3. P.E. Zhidkov, On invariant measure for some infinite-dimensional dynamical systems, Ann. Inst. H. Poincare Sect. A 62, 267–287 (1995). URL: https://link.springer.com/chapter/10.1007/978-94-017-0693-3_32
4. V.M. Busovikov, V.Zh. Sakbaev, Direct limit of shift-invariant measures on a Hilbert space, Lobachevskii J. Math. 44 (6), 1998–2006 (2023). DOI: https://doi.org/10.1134/S1995080223060136
5. V.Zh. Sakbaev, Flows in infinite-dimensional phase space equipped with a finitely-additive invariant measure, Mathematics 11 (5), 1161 (2023). DOI: https://doi.org/10.3390/math11051161
6. Yu.N. Orlov, V.Zh. Sakbaev, O.G. Smolyanov, Unbounded random operators and Feynman formulae, Izv. Math., 80 (6), 1131–1158 (2016). DOI: https://doi.org/10.1070/im8402
7. M.D. Srinivas, Collapse postulate for observables with continuous spectra, Comm. Math. Phys. 71 (2), 131–158 (1980). DOI: https://doi.org/10.1007/bf01197917
8. V.V. Kozlov, O.G. Smolyanov, Hamiltonian approach to secondary quantization, Dokl. Math. 98 (3), 571–574 (2018). DOI: https://doi.org/10.1134/S1064562418070098
9. O.G. Smolyanov, N.N. Shamarov, Schro¨dinger Quantization of Infinite-Dimensional Hamiltonian Systems with a Nonquadratic Hamiltonian Function, Dokl. Math. 101 (3), 227–230 (2020). DOI: https://doi.org/10.1134/S1064562420030205
10. T. Gill, A. Kirtadze, G. Pantsulaia, A. Plichko, Existence and uniqueness of translation invariant measures in separable Banach spaces, Functiones et Approximatio 50 (2), 1– 19 (2014). DOI: https://10.7169/facm/2014.50.2.12
11. R. Baker, “Lebesgue measure” on R∞, Proc. Amer. Math. Soc. 113 (4), 1023–1029 (1991). DOI: https://doi.org/10.2307/2048779
12. D.V. Zavadskii, Analogs of the Lebesgue measure in spaces of sequences and classes of functions integrable with respect to these measures, J. Math. Sci. (N.Y.), 252 (1), 36–42 (2021). DOI: https://doi.org/10.1007/s10958-020-05139-8
13. V.Zh. Sakbaev, Averaging of random walks and shift-invariant measures on a Hilbert space, Theor. Math. Phys. 191 (3), 886–909 (2017). DOI: https://doi.org/10.1134/S0040577917060083
14. V.A. Glazatov, V.Zh. Sakbaev, Measures on a Hilbert space that are invariant with respect to Hamiltonian flows, Ufimsk. Mat. Zh. 14 (2), 3–21 (2022). DOI: https://doi.org/10.13108/2022-14-2-3
15. A.Yu. Khrennikov, Symplectic geometry on an infinite-dimensional phase space and an asymptotic representation of quantum averages by Gaussian functional integrals, Izv. Math. 72 (1), 127–148 (2008). DOI: https://doi.org/10.1070/IM2008v072n01ABEH002395
16. N. Dunford, J.T.Schwartz, Linear operators, Part 1: General theory, Wiley-Interscience, 1988.
17. E.M. Semenov, F.A. Sukochev, A.S. Usachev, Geometry of Banach limits and their applications, Russ. Math. Surv. 75 (4), 725–763 (2020). DOI: https://doi.org/10.1070/RM9901
18. F. Sukochev, A. Usachev, D. Zanin, Generalized limits with additional invariance properties and their applications to noncommutative geometry, Adv. Math. 239, 164–189 (2013). DOI: https://doi.org/10.1016/j.aim.2013.02.012
Review
For citations:
Glazatov V.A., Sakbaev V.Z. On the extension of singular linear infinite-dimensional Hamiltonian flows. Mathematics and Theoretical Computer Science. 2024;2(1):31-54. (In Russ.) https://doi.org/10.26907/2949-3919.2024.1.31-54