Preview

Mathematics and Theoretical Computer Science

Advanced search

Locally finite and finitely approximated unoids over computably separable equivalences

https://doi.org/10.26907/2949-3919.2024.1.55-73

Abstract

We prove that every coinfinite set is a characteristic transversal of a suitably computably separable equivalence relation, over which only locally finite, locally finite separable and finitely approximable unary algebras are represented. Similar properties for uniformly computable separable equivalences are considered.

About the Author

N. K. Kasymov
National Universitet of Uzbekistan
Uzbekistan

Nadimulla Khabibullaevich Kasymov 

4 Universitetskaya str., Tashkent 100174 



References

1. Yu.L. Ershov, Theory of numberings, Nauka, M., 1977 [in Russian.].

2. Yu. L. Ershov, Theory of numberings, in: E.R. Griffor (ed.), Handbook of computability theory (Stud. Logic Found. Math., 140), Amsterdam, Elsevier, 1999, 473–503. DOI: https://doi.org/10.1016/S0049-237X(99)80030-5

3. R. I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspectives in mathematical logic. Springer-Verlag, Berlin, Heidelberg, New York, etc., 1987. URL: https://link.springer.com/book/9783540666813

4. S.S. Goncharov, Yu.L. Ershov, Constructive Models, Siberian School of Algebra and Logic. Consultants Bureau, New York, 2000.

5. P.M. Cohn, Universal algebra, MAIA 6, D. Reidel Publishing Co., Dordrecht–Boston, Mass., 1981. DOI: https://doi.org/10.1007/978-94-009-8399-1

6. A.I.Mal’tsev, Algebraic Systems, Springer-Verlag, New York–Heidelberg, 1973. DOI: https://doi.org/10.1007/978-3-642-65374-2

7. U. Andrews, A. Sorbi, Joins and meets in the structure of ceers, Computability 8 (3–4), 193–241 (2019). DOI: https://doi.org/10.3233/COM-180098

8. U. Andrews, D.F. Belin, L. San Mauro, On the structure of computable reducibility on equivalence relations of natural numbers, J. Symb. Logic 88 (3), 1038–1063 (2023). DOI: https://doi.org/10.1017/jsl.2022.28

9. N.Kh. Kasymov, F.N. Ibragimov, Separable enumerations of division rings and effective embeddability of rings therein, Siberian Math. J. 60 (1), 62–70 (2019). DOI: https://doi.org/10.1134/S0037446619010075

10. M.M. Arslanov, On effectively hypersimple sets, Algebra Logic 8 (2), 79–85 (1969). DOI: https://doi.org/10.1007/BF02219827

11. M.Kh. Faizrakhmanov, Universal generalized computable numberings and hyperimmunity, Algebra Logic 56 (4), 337–347 (2017). DOI: https://doi.org/10.1007/s10469-017-9454-5

12. N.Kh. Kasymov, Algebras with finitely approximable positively representable enrichments, Algebra Logic 26 (6), 441–450 (1987). DOI: https://doi.org/10.1007/BF01988315

13. A.I. Mal’tsev, Constructive algebras I, Russian Math. Surveys 16 (3), 77–129 (1961). DOI: https://doi.org/10.1070/RM1961v016n03ABEH001120

14. N.Kh. Kasymov, Positive algebras with congruences of finite index, Algebra Logic 30 (6), 190–199 (1991). DOI: https://doi.org/10.1007/BF01978852

15. N.Kh. Kasymov, Recursively separable enumerated algebras, Russian Math. Surveys 51 (3), 509–538 (1996). DOI: https://doi.org/10.1070/RM1996v051n03ABEH002913

16. N.Kh. Kasymov, Positive algebras with nonetherian congruence lattices, Siberian Math. J. 33 (2), 338–341 (1992). DOI: https://doi.org/10.1007/BF00971109

17. N.Kh. Kasymov, Positive algebras with countable congruence lattices, Algebra Logic 31 (1), 12–23 (1992). URL: https://doi.org/10.1007/BF02259854

18. J.A. Bergstra, J.V. Tucker, A characterization of computable data types by means of a finite, equational specification method, Lecture Notes in Comput. Sci. 85, 76–90 (1980). DOI: https://doi.org/10.1007/3-540-10003-2_61

19. N.Kh. Kasymov, Homomorphisms onto negative algebras, Algebra Logic 31 (2), 81–89 (1992). DOI: https://doi.org/10.1007/BF02259847

20. N.Kh. Kasymov, Homomorphisms onto effectively separable algebras, Siberian Math. J. 57 (1), 36–50 (2016). DOI: https://doi.org/10.1134/S0037446616010055

21. N.Kh. Kasymov, Enumerated algebras with uniformly recursive-separable classes, Siberian Math. J. 34 (5), 869–882 (1993). DOI: https://doi.org/10.1007/BF00971403

22. A.I. Mal’tsev, On the general theory of algebraic systems, Amer. Math. Soc. Transl. Ser. 2 27, 125–142 (1963).

23. N.Kh. Kasymov, R.N. Dadazhanov, S.K. Zhavliev, Structures of degrees of negative representations of linear orders, Russ. Math. 65 (12), 27–46 (2021). DOI: https://doi.org/10.3103/S1066369X21120045

24. N.Kh. Kasymov, Computably separable numbering of locally finite separable algebras, Sib. Electron. Math. Rep. (to appear).

25. C.G. Jockusch, J.C. Owings, Weakly semirecursive sets, J. Symb. Log. 55 (2), 637–644 (1990). DOI: https://doi.org/10.2307/2274653

26. N.Kh. Kasymov, A.S. Morozov, Lower semilattices of separable congruences of numbered algebras, Siberian Math. J. 64 (4), 864–876 (2023). DOI: https://doi.org/10.1134/S0037446623040080

27. N.Kh. Kasymov, Algebras over negative equivalences, Algebra logic 33 (1), 46–48 (1994). DOI: https://doi.org/10.1007/BF00739416


Review

For citations:


Kasymov N.K. Locally finite and finitely approximated unoids over computably separable equivalences. Mathematics and Theoretical Computer Science. 2024;2(1):55-73. (In Russ.) https://doi.org/10.26907/2949-3919.2024.1.55-73

Views: 536


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3919 (Online)