On Σ-presentations of the additive group of the real numbers
https://doi.org/10.26907/2949-3919.2024.1.74-93
Abstract
We prove the existence of 2ω pairwise non-Σ-embeddable into each other (and henceforth non-Σ-isomorphic) Σ-presentations of the additive group of the real numbers in the hereditarily finite superstructure over the ordered field of the real numbers.
About the Author
A. S. MorozovRussian Federation
Andrey Sergeevich Morozov
4 Acad. Koptyug Avе., Novosibirsk 630090
1 Pirogov str., Novosibirsk 630090
References
1. J. Barwise, Admissible sets and structures, Springer-Verlag, Berlin, G¨ottingen, Heidelberg, 1975.
2. Yu.L. Ershov, Definability and computability, Siberian School of Algebra and Logic, Nauchnaya Kniga (NII MIOONGU), Novosibirsk, 1996 [in Russian].
3. Yu.L. Ershov, Σ-Definability of algebraic structures, in: Handbook of Recursive Mathematics Volume 1: Recursive Model Theory, 235–260 (1998). DOI: https://doi.org/10.1016/S0049-237X(98)80006-2
4. V.G. Puzarenko, Yu.L. Ershov, A.I. Stukachev, HF-computability, in: Computability in context. Computation and logic in the real world, 169–242, Imperial College Press, 2011. DOI: 10.1142/9781848162778_0006
5. A.I. Mal’tcev, On recursive Abelian groups, Dokl. AN SSSR 146 (5), 1009–1012 (1961) [in Russian]. URL: https://www.mathnet.ru/rus/dan27085
6. S.S. Goncharov, The problem of the number of nonautoequivalent constructivizations, Algebra Logika 19 (6), 621–639 (1980). 621–639 [in Russian]. URL: https://www.mathnet.ru/rus/al1702
7. A.S. Morozov, Some presentations of the real number field, Algebra Logic 51 (1), 66–88 (2012). DOI: https://doi.org/10.1007/s10469-012-9171-z
8. A.S. Morozov, Σ-presentations of the ordering on the reals, Algebra Logic 53 (3), 217–237 (2014). DOI: https://doi.org/10.1007/s10469-014-9285-6
9. A.S. Morozov, Nonpresentability of some structures of analysis in hereditarily finite superstructures, Algebra Logic 56 (6), 458–472 (2018). DOI: https://doi.org/10.1007/s10469-018-9468-7
10. A.S. Morozov, A sufficient condition for nonpresentability of structures in hereditarily finite superstructures, Algebra Logic 55 (3), 242–251 (2016). DOI: https://doi.org/10.1007/s10469-016-9392-7
11. A. Tarski, A decision method for elementary algebra and geometry, The Rand Corporation, Santa Monica, 1957.
Review
For citations:
Morozov A.S. On Σ-presentations of the additive group of the real numbers. Mathematics and Theoretical Computer Science. 2024;2(1):74-93. (In Russ.) https://doi.org/10.26907/2949-3919.2024.1.74-93