Preview

Mathematics and Theoretical Computer Science

Advanced search

Some properties of classes of minimal numberings of arithmetical set families

https://doi.org/10.26907/2949-3919.2024.1.94-108

Abstract

We prove that for each u ⩾ 2 the class of all single-valued Σ0 ucomputable numberings of any infinite family of total functions is effectively infinite and the class of all its Σ0 u-1-computable numberings is generated by the downward closure with respect to the reducibility of the set of all infinite direct sums of uniformly Σ0 u-1-computable sequences of its single-valued numberings. It is established that if u > 2, then the class of all Σ0 u-computable numberings of any infinite family is generated by infinite direct sums of uniformly Σ0 u-computable and uniformly Σ0 u-minimal sequences of its numberings.

About the Authors

Sh. D. Nodirov
Karshi State University
Uzbekistan

Shohruh Dilmurodovich Nodirov 

17 Kuchabag str., Karshi 180119 



M. Kh. Faizrahmanov
Kazan Federal University, Volga Region Mathematical Center
Russian Federation

Marat Khaidarovich Faizrahmanov 

18 Kremlyovskaya str., Kazan 420008 



References

1. Yu.L. Ershov, Theory of numberings, Nauka, M., 1977 [in Russian.].

2. Yu.L. Ershov, Theory of numberings, in: E.R. Griffor (ed.), Handbook of computability theory (Stud. Logic Found. Math., 140), Amsterdam, Elsevier, 1999, 473–503. DOI: https://doi.org/10.1016/S0049-237X(99)80030-5

3. Yu.L. Ershov, Definability and computability (Siberian School of Algebra and Logic), Novosibirsk, Nauch. Kniga, M., Ekonomika, 2nd ed., 2000 [in Russian.].

4. S.S. Goncharov, A. Sorbi, Generalized computable numerations and nontrivial Rogers semilattices, Algebra Logic 36 (6), 359–369 (1997). DOI: https://doi.org/10.1007/BF02671553

5. S.A. Badaev, S.S. Goncharov, Rogers semilattices of families of arithmetic sets, Algebra Logic 40 (5), 283–291 (2001). DOI: https://doi.org/10.1023/A:1012516217265

6. S.Yu. Podzorov, Local structure of Rogers semilattices of Σ0 n-computable numberings, Algebra Logic 44 (2), 82–94 (2005). DOI: https://doi.org/10.1007/s10469-005-0010-3

7. S.A. Badaev, S.S. Goncharov, A. Sorbi, Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy, Algebra Logic 45 (6), 361–370 (2006). DOI: https://doi.org/10.1007/s10469-006-0034-3

8. S.A. Badaev, S.S. Goncharov, Computability and numberings, in: S. B. Cooper (ed.) et al., New computational paradigms. Changing conceptions of what is computable, New York, Springer-Verlag, 19–34 (2008). DOI: https://doi.org/10.1007/978-0-387-68546-5_2

9. M.Kh. Faizrakhmanov, Khutoretskii’s theorem for generalized computable families, Algebra Logic 58 (4), 356–365 (2019). DOI: https://doi.org/10.1007/s10469-019-09557-9

10. S.A. Badaev, Minimal enumerations, Trudy Inst. Mat. SO RAN 25, 3–34 (1993) in Russian.. URL: https://www.mathnet.ru/eng/mt425

11. M.Kh. Faizrahmanov, Minimal generalized computable enumerations and high degrees, Sib. Math. J. 58 (3), 553–558 (2017). DOI: https://doi.org/10.1134/S0037446617030181

12. S.A. Badaev, A problem of S. S. Goncharov, Sib. Math. J. 32 (3), 532–534 (1991). DOI: https://doi.org/10.1007/BF00970493

13. S.S. Goncharov, A. Yakhnis, V. Yakhnis, Some effectively infinite classes of enumerations, Ann. Pure App. Log. 60 (3), 207–235 (1993). DOI: https://doi.org/10.1016/0168-0072(93)90076-P

14. B. Schinzel, On decomposition of G¨odelnumberings into Friedbergnumberings, J. Symb. Log. 47 (2), 267–274 (1982). DOI: https://doi.org/10.2307/2273141

15. B. Schinzel, Complexity of decompositions of G¨odel numberings, Fundam. Inform. 5 (1), 15–33 (1982). DOI: https://doi.org/10.3233/FI-1982-5103

16. R.I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspectives in mathematical logic. Springer-Verlag, Berlin, Heidelberg, New York, etc., 1987 URL: https://link.springer.com/book/9783540666813

17. J. Myhill, Creative sets, Z. Math. Logik und Grundlag. Math. 1 (2), 97–108 (1955). DOI: https://doi.org/10.1002/malq.19550010205

18. M.Kh. Faizrahmanov, Z. K. Shchedrikova, Effectively infinite classes of numberings and computable families of feals, Computability 12 (4), 339–350 (2023). DOI: https://doi.org/10.3233/COM-230461

19. M.Kh. Faizrahmanov, Extremal numberings and fixed point theorems, Math. Log. Q. 68 (4), 398–408 (2022). DOI: https://doi.org/10.1002/malq.202200035

20. M. Faizrahmanov, Fixed point theorems for minimal numberings, J. Log. Comput. (2023) DOI: https://doi.org/10.1093/logcom/exad074

21. M. Faizrahmanov, I. Kalimullin, The enumeration spectrum hierarchy of n-families, Math. Log. Quart. 64 (4–5), 420–426 (2016). DOI: https://doi.org/10.1002/malq.201500056


Review

For citations:


Nodirov Sh.D., Faizrahmanov M.Kh. Some properties of classes of minimal numberings of arithmetical set families. Mathematics and Theoretical Computer Science. 2024;2(1):94-108. (In Russ.) https://doi.org/10.26907/2949-3919.2024.1.94-108

Views: 265


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3919 (Online)