On a function space with mixed generalized logarithmic smoothness
https://doi.org/10.26907/2949-3919.2024.2.4-29
Abstract
We consider the anisotropic Lorentz space of 2π-periodic functions of m variables and the Nikol’skii–Besov space of functions with mixed generalized logarithmic smoothness. Embedding theorems are proved for spaces of functions with mixed generalized logarithmic smoothness.
About the Author
G. AkishevKazakhstan
Gabdolla Akishev
11 Kazhymukan str., Astana 100001, Kazakhstan;
125 Pushkin str., Almaty 050010, Kazakhstan
References
1. S.G. Krein, Yu.I. Petunin, E.M. Semenov, Interpolation of linear operators, Ser. Translat. Math. Monographs 54, AMS, Providence, R.I., 1982.
2. A.P. Blozinski, Multivariate rearrangements and Banach function spaces with mixed norms, Trans. Amer. Math. Soc. 263 (1), 149–167 (1981). DOI: https://doi.org/10.2307/1998649
3. V.I. Kolyada, On embedding theorems, In Nonlinear Analysis, Function Spaces and Applications, Proceedings of the Spring School held in Prague, Vol. 8, 35–94 (2007). URL: https://dml.cz/handle/10338.dmlcz/702492
4. E.D. Nursultanov, On the coefcients of multiple Fourier series in Lp-spaces, Izv. Math. 64 (1), 93–120 (2000). DOI: https://doi.org/10.1070/im2000v064n01ABEH000275
5. S.M. Nikol’skii, Approximation of functions of several variables and embedding theorems, Nauka, Moscow, 1977 [in Russian].
6. P.I. Lizorkin, S. M. Nikol’skii, Functional spaces of mixed smoothness from decompositional point of view, Proc. Steklov Inst. Math. 187, 163–184 (1990).
7. M.K. Potapov, The study of certain classes of functions by means of “angular” approximation, Proc. Steklov Inst. Math. 117, 301–342 (1972).
8. M.K. Potapov, Imbedding theorems in a mixed metric, Proc. Steklov Inst. Math. 156, 155– 171 (1983).
9. S.M. Nikol’skii, Inequalities for entire functions of fi degree and their application in the theory of differentiable functions of several variables, Tr. Mat. Inst. Steklov 38, 244–278 (1951) [in Russian]. URL: https://www.mathnet.ru/rus/tm1119
10. O.V. Besov, Investigation of a class of function spaces in connection with imbedding and extension theorems, Tr. Mat. Inst. Steklov 60, 42–81 (1961) [in Russian]. URL: https://www.mathnet.ru/rus/tm1480
11. F. Cobos, O. Dominguez, On Besov spaces of logarithmic smoothness and Lipschitz spaces, J. Math. Anal. Appl. 425 (1), 71–84 (2015). DOI: https://doi.org/10.1016/j.jmaa.2014.12.034
12. F. Cobos, O. Dominguez, H. Triebel, Characterizations of logarithmic Besov spaces in terms of diff ences, Fourier-analytical decompositions, wavelets and semi-groups, J. Funct. Anal. 270 (12), 4386–4425 (2016). DOI: https://doi.org/10.1016/j.jfa.2016.03.007
13. O. Dominguez, S. Tikhonov, Function spaces of logarithmic smoothness: embedding and characterizations, Preprint, arXiv:1811.06399 [math.FA], 2018. URL: https://arxiv.org/abs/1811.06399
14. S. Artamonov, K.V. Runovskii, H.-J. Schmeisser, Besov spaces with generalized smoothness and summability of multiple Fourier series, J. Approx. Theory 284, art. 105822 (2022). DOI: https://doi.org/10.1016/j.jat.2022.105822
15. S. M. Nikol’skii, Functions with dominating mixed derivatives satisfying multiple H¨older conditions, Amer. Math. Soc. Transl. Ser. 2 102, 27–51 (1973).
16. T.I. Amanov, Spaces of diferentiable functions with dominating mixed derivatives, AlmaAta, Nauka, 1976.
17. N.K. Bary, S.B. Stechkin, Best approximations and diff ential properties of two conjugate functions, Tr. Mosk. Mat. Obs. 5, 483–522 (1956) [in Russian]. URL: https://www.mathnet.ru/rus/mmo56
18. D.E. Edmunds, W.D. Evans, Hardy operators, function spaces and embedding, SpringerVerlag, Berlin, 2004. DOI: https://doi.org/10.1007/978-3-662-07731-3
19. N. Temirgaliev, Embeddings of the classes Hω in Lorentz spaces, Sib. Math. J. 24 (2), 287–298 (1983). DOI: https://doi.org/10.1007/BF00968743
20. G. Akishev, Embedding theorems for spaces with mixed logarithmic smoothness, Traditional International April Mathematical Conference In Honor of the Kazakhstan Day of science workers, 60–62 (2023).
21. G. Akishev, On approximation orders of functions of several variables in the Lorentz space, Proc. Steklov Inst. Math. 300 (Suppl 1), 9–24 (2018). DOI: https://doi.org/10.1134/S0081543818020037
22. H. Johansson, Embedding of Hωin some Lorentz spaces, Research Reports. Univ. Ume˚a, Report No. 6 (1975).
23. G. Akishev, Estimates of the order of approximation of functions of several variables in the generalized Lorentz space, Preprint: arXiv: 2105.14810v1 (2021). URL: https://arxiv.org/abs/2105.14810
24. M.K. Potapov, B.V. Simonov, S.Yu. Tikhonov, Mixed moduli of smoothness in Lp, 1 < p < ∞: a survey, Surveys in Approximation Theory 8, 1–57 (2013). URL: https://www.emis.de/journals/SAT/papers/18/index.html
25. V.N. Temlyakov, Approximation of functions with bounded mixed derivative, Proc. Steklov Inst. Math. 178, 1–121 (1989).
Review
For citations:
Akishev G. On a function space with mixed generalized logarithmic smoothness. Mathematics and Theoretical Computer Science. 2024;2(2):4–29. (In Russ.) https://doi.org/10.26907/2949-3919.2024.2.4-29