Chaotic and frequently hypercyclic operators in the weighted space of entire functions
https://doi.org/10.26907/2949-3919.2024.2.84-106
Abstract
We study the issues of chaoticity and frequently hypercyclicity of various operators in the weighted space Fφ(Cn), defined as the projective limit of Banach spaces. Theorems 8–13 consider the cases of differentiation and shift operators, as well as their compositions in Fφ(Cn). For linear continuous operators commuting with differentiation, Theorem 14 shows that they are chaotic in Fφ(Cn). In Theorem 15, such operators are proved to be frequently hypercyclic in Fφ(Cn), and also are the most important consequences of these statements are indicated.
About the Author
A. I. RakhimovaRussian Federation
Alsu Il’darovna Rakhimova
112 Chernyshevsky str., Ufa 450008, Russia
References
1. R.L. Devaney, An introduction to chaotic dynamical systems, Addison-Wesley Publ., Redwood City, CA, 1989. DOI: http://doi.org/10.1201/9780429280801
2. J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey, On Devaney’s definition of chaos, Amer. Math. Monthly 99 (4), 332–334 (1992). DOI: https://doi.org/10.2307/2324899
3. G. Godefroy, J.H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (2), 229–269 (1991). DOI: https://doi.org/10.1016/0022-1236(91)90078-J
4. R.M. Crownover, Introduction to fractals and chaos, Jones and Bartlet, Boston, 1995.
5. J.J. Betancor, M. Sifi, K.Trimeche, Hypercyclic and chaotic convolution operators associated with Dunkl operators on C, Acta Math. Hung. 106 (1–2), 101–116 (2005). DOI: https://doi.org/10.1007/s10474-005-0009-1
6. F. Bayart, S. Grivaux, Frequently hypercyclic operators, Trans. Amer. Math. Soc. 358 (11), 5083–5117 (2006). DOI: https://doi.org/10.1090/S0002-9947-06-04019-0
7. A. Bonilla, K.-G. Grosse-Erdmann, On a theorem of Godefroy and Shapiro, Integral Equ. Oper. Theory 56 (2), 151–162 (2006). DOI: https://doi.org/10.1007/s00020-006-1423-7
8. A. Bonilla, K.-G. Grosse-Erdmann, Frequently hypercyclic operators and vectors, Ergodic Th. & Dynam. Systems 27 (2), 383–404 (2007). DOI: https://doi.org/10.1017/S014338570600085X
9. F. Bayart, E. Matheron, Dynamics of linear operators, Cambridge Univ. Press, Cambridge, 2009. DOI: https://doi.org/10.1017/CBO9780511581113
10. K.-G. Grosse-Erdmann, A.M. Peris, Linear chaos, Springer, London, 2011. DOI: https://doi.org/10.1007/978-1-4471-2170-1
11. M.W. Hirsch, S. Smale, R.L. Devaney, Differential equations, dynamical systems, and an introduction to chaos, Elsevier/Academic Press, Amsterdam, 2013. DOI: https://doi.org/10.1016/C2009-0-61160-0
12. S. Grivaux, A new class of frequently hypercyclic operators, Indiana Univ. Math. J. 60 (4), 1177–1202 (2011). URL: https://doi.org/10.1512/iumj.2011.60.4350
13. J. Bonet, Dynamics of the diff entiation operator on weighted spaces of entire functions, Math. Z. 261 (3), 649–657 (2009). DOI: https://doi.org/10.1007/s00209-008-0347-0
14. A.V. Abanin, Ph.T. Tien, Classical operators in weighted Banach spaces of holomorphic functions, J. Math. Sci. 241 (6), 647–657 (2019). DOI: https://doi.org/10.1007/s10958-019-04452-1
15. A.V. Abanin, T.I. Abanina, On composition operators on Hilbert spaces of entire functions, Russian Math. (Iz. VUZ) 61 (10), 1–4 (2017). DOI: https://doi.org/10.3103/S1066369X17100012
16. V. E. Kim, Hypercyclic and chaotic operators on the space of entire functions, Proc. of the Institute of Mathematics with Computing Centre, Ufa Federal Research Centre of Russian Academy of Science 1, 126–130 (2008) [in Russian].
17. V.E. Kim, Completeness of systems of derivatives of Airy functions and hypercyclic operators, Ufimsk. Mat. Zh. 2 (4), 52–57 (2010) [in Russian]. URL: https://www.mathnet.ru/eng/ufa71
18. B.A. Taylor, On weighted polynomial approximation of entire functions, Pacific J. Math. 36 (2), 523–539 (1971). DOI: http://doi.org/10.2140/pjm.1971.36.523
19. F. Haslinger, Weighted spaces of entire functions, Indiana Univ. Math. J. 35 (1), 193–208 (1986). URL: https://doi.org/10.1512/iumj.1986.35.35011
20. A.I. Rakhimova, On hypercyclic operators in weighted spaces of entire functions, Taurida Journal of Computer Science Theory and Mathematics (1), 88–110 (2023) [in Russian]. URL: https://www.mathnet.ru/eng/tvim162
21. V. V. Napalkov, Convolution equations in multidimensional spaces, Nauka, Moscow, 1982 [in Russian].
22. R. C. Gunning, H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965.
Review
For citations:
Rakhimova A.I. Chaotic and frequently hypercyclic operators in the weighted space of entire functions. Mathematics and Theoretical Computer Science. 2024;2(2):84-106. (In Russ.) https://doi.org/10.26907/2949-3919.2024.2.84-106