Three problems of restoring a signal-vector by measurement modules and by norms of projectors
Abstract
The article gives a brief overview of the results of the recovery signalvector by modules of measurements and by norms of orthoprojectors in finitedimensional Euclidean and unitary spaces, and in infinite-dimensional real space ℓ2. Three unsolved problems are formulated. Possible solutions are given, and theorems that give partial answers to the questions posed
Keywords
About the Authors
I. M. IzbiakovRussian Federation
1 Akademika Pavlova str., Samara 443011
S. Ya. Novikov
Russian Federation
1 Akademika Pavlova str., Samara 443011
References
1. R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, Appl. Comput. Harmon. Anal. 20 (3), 345–356 (2006). DOI: http://dx.doi.org/10.1016/j.acha.2005.07.001
2. T. Bendory, D. Edidin, Algebraic theory of Phase Retrieval (2022). URL: https://arxiv.org/abs/2203.02774
3. A. Bandeira, J. Cahill, D. Mixon, A. Nelson, Saving phase: Injectivity and stability for phase retrieval, Appl. Comput. Harmon. Anal. 37 (1), 106–125 (2014). DOI: https://doi.org/10.1016/J.ACHA.2013.10.002
4. S. Botelho-Andrade, P. Casazza, H. Nguyen, J. Tremain, Phase retrieval versus phaseless reconstruction, J. Math. Anal. Appl. 436 (1), 131–137 (2016). DOI: https://doi.org/10.1016/J.JMAA.2015.11.045
5. A. Conca, D. Edidin, M. Hering, C. Vinzant, An algebraic characterization of injectivity in phase retrieval, Appl. Comput. Harmon. Anal. 38 (2), 346–356 (2015). DOI: http://dx.doi.org/10.1016/j.acha.2014.06.005
6. D. Edidin, Projections and phase retrieval, Appl. Comput. Harmon. Anal. 42 (2), 350–359 (2017). DOI: http://dx.doi.org/10.1016/j.acha.2015.12.004
7. C. Vinzant, A small frame and a certificate of its injectivity, Int. Conf. on Sampling Theory and Appl. (SampTA), 197–200 (2015). DOI: http://dx.doi.org/10.1109/SAMPTA.2015.7148879
8. T. Heinosaari, L. Mazzarella, M. Wolf, Quantum tomography under prior information, Comm. Math. Phys. 318 (2), 355–374 (2013). DOI: https://doi.org/10.1007/s00220-013-1671-8
9. J. Cahill, P.G. Casazza, J. Peterson and L. Woodland, Phase retrieval by projections, Houston J. Math. 42 (2), 537–558 (2016). URL: https://math.uh.edu/~hjm/Vol42-2.html
10. Z. Xu, The minimal measurement number for low rank matrix recovery, Appl. Comput. Harmon. Anal. 44 (2), 497–508 (2018). DOI: https://doi.org/10.1016/J.ACHA.2017.01.005
11. P. Casazza, D. Ghoreishi, Phase retrieval by projections in Rn requires 2n − 2 projections (2020). URL: https://arxiv.org/abs/2012.10738
12. S. Botelho-Andrade, P. Casazza, D. Cheng, J. Haas, T. Tran, Phase Retrieval in ℓ2(R) (2018). URL: https://arxiv.org/abs/1804.01139
13. J. Cahill, P.G. Casazza, I. Daubechies, Phase retrieval in infinite dimensional Hilbert spaces, Trans. Am. Math. Soc., Ser. B 3, 63–76 (2016). DOI: http://dx.doi.org/10.1090/btran/12
Review
For citations:
Izbiakov I.M., Novikov S.Ya. Three problems of restoring a signal-vector by measurement modules and by norms of projectors. Mathematics and Theoretical Computer Science. 2023;1(1):24-34. (In Russ.)