Preview

Mathematics and Theoretical Computer Science

Advanced search

Three problems of restoring a signal-vector by measurement modules and by norms of projectors

Abstract

The article gives a brief overview of the results of the recovery signalvector by modules of measurements and by norms of orthoprojectors in finitedimensional Euclidean and unitary spaces, and in infinite-dimensional real space ℓ2. Three unsolved problems are formulated. Possible solutions are given, and theorems that give partial answers to the questions posed

About the Authors

I. M. Izbiakov
Samara National Research University
Russian Federation

1 Akademika Pavlova str., Samara 443011



S. Ya. Novikov
Samara National Research University
Russian Federation

1 Akademika Pavlova str., Samara 443011



References

1. R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, Appl. Comput. Harmon. Anal. 20 (3), 345–356 (2006). DOI: http://dx.doi.org/10.1016/j.acha.2005.07.001

2. T. Bendory, D. Edidin, Algebraic theory of Phase Retrieval (2022). URL: https://arxiv.org/abs/2203.02774

3. A. Bandeira, J. Cahill, D. Mixon, A. Nelson, Saving phase: Injectivity and stability for phase retrieval, Appl. Comput. Harmon. Anal. 37 (1), 106–125 (2014). DOI: https://doi.org/10.1016/J.ACHA.2013.10.002

4. S. Botelho-Andrade, P. Casazza, H. Nguyen, J. Tremain, Phase retrieval versus phaseless reconstruction, J. Math. Anal. Appl. 436 (1), 131–137 (2016). DOI: https://doi.org/10.1016/J.JMAA.2015.11.045

5. A. Conca, D. Edidin, M. Hering, C. Vinzant, An algebraic characterization of injectivity in phase retrieval, Appl. Comput. Harmon. Anal. 38 (2), 346–356 (2015). DOI: http://dx.doi.org/10.1016/j.acha.2014.06.005

6. D. Edidin, Projections and phase retrieval, Appl. Comput. Harmon. Anal. 42 (2), 350–359 (2017). DOI: http://dx.doi.org/10.1016/j.acha.2015.12.004

7. C. Vinzant, A small frame and a certificate of its injectivity, Int. Conf. on Sampling Theory and Appl. (SampTA), 197–200 (2015). DOI: http://dx.doi.org/10.1109/SAMPTA.2015.7148879

8. T. Heinosaari, L. Mazzarella, M. Wolf, Quantum tomography under prior information, Comm. Math. Phys. 318 (2), 355–374 (2013). DOI: https://doi.org/10.1007/s00220-013-1671-8

9. J. Cahill, P.G. Casazza, J. Peterson and L. Woodland, Phase retrieval by projections, Houston J. Math. 42 (2), 537–558 (2016). URL: https://math.uh.edu/~hjm/Vol42-2.html

10. Z. Xu, The minimal measurement number for low rank matrix recovery, Appl. Comput. Harmon. Anal. 44 (2), 497–508 (2018). DOI: https://doi.org/10.1016/J.ACHA.2017.01.005

11. P. Casazza, D. Ghoreishi, Phase retrieval by projections in Rn requires 2n − 2 projections (2020). URL: https://arxiv.org/abs/2012.10738

12. S. Botelho-Andrade, P. Casazza, D. Cheng, J. Haas, T. Tran, Phase Retrieval in ℓ2(R) (2018). URL: https://arxiv.org/abs/1804.01139

13. J. Cahill, P.G. Casazza, I. Daubechies, Phase retrieval in infinite dimensional Hilbert spaces, Trans. Am. Math. Soc., Ser. B 3, 63–76 (2016). DOI: http://dx.doi.org/10.1090/btran/12


Review

For citations:


Izbiakov I.M., Novikov S.Ya. Three problems of restoring a signal-vector by measurement modules and by norms of projectors. Mathematics and Theoretical Computer Science. 2023;1(1):24-34. (In Russ.)

Views: 135


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3919 (Online)