Preview

Mathematics and Theoretical Computer Science

Advanced search

Elementary embeddability with respect to Weihrauch reducibility

https://doi.org/10.26907/2949-3919.2024.4.4-23

Abstract

We study the Weihrauch complexity for problems of finding an elementary embedding (within the framework of the classical model theory). We prove that the problem of finding an elementary embedding from a prime model M into an arbitrary model N (which is elementarily equivalent to M) is strongly Weihrauch equivalent to the familiar problem lim (i.e., the problem of finding the limit of a sequence in Baire space). We show that the problem of finding an elementary embedding from an arbitrary model M into a countable saturated model N is also strongly Weihrauch equivalent to lim.

About the Authors

N. A. Bazhenov
Sobolev Institute of Mathematics
Russian Federation

Nikolay Alekseyevich Bazhenov

4 Acad. Koptyug Ave., Novosibirsk 630090



M. I. Marchuk
Sobolev Institute of Mathematics
Russian Federation

Margarita Igorevna Marchuk

4 Acad. Koptyug Ave., Novosibirsk 630090



M. Fiori-Carones
Sobolev Institute of Mathematics
Russian Federation

Marta Fiori-Carones

4 Acad. Koptyug Ave., Novosibirsk 630090



References

1. S.G.Simpson, Subsystems of second order arithmetic. Second edition. Cambridge Univ. Press, Cambridge, 2009. DOI: https://doi.org/10.1017/CBO9780511581007

2. D.R.Hirschfeldt, Slicing the truth: On the computable and reverse mathematics of combinatorial principles. World Scientific Publishing Co., Hackensack, NJ, 2015. DOI: https://doi.org/10.1142/9208

3. D.R.Hirschfeldt, R.A.Shore, T.A.Slaman, The atomic model theorem and type omitting, Trans. Amer. Math. Soc. 361 (11), 5805–5837 (2009). DOI: https://doi.org/10.1090/S0002-9947-09-04847-8

4. D.R.Belanger, Reverse mathematics of first-order theories with finitely many models, J. Symb. Log. 79 (3), 955–984 (2014). DOI: https://doi.org/10.1017/jsl.2014.32

5. D.R.Belanger, WKL<sub>0</sub> and induction principles in model theory, Ann. Pure Appl. Logic 166 (7–8), 767–799 (2015). DOI: https://doi.org/10.1016/j.apal.2015.04.001

6. P.Cholak, C.McCoy, Effective prime uniqueness, Proc. Amer. Math. Soc. 145 (12), 5363– 5379 (2017). DOI: https://doi.org/10.1090/proc/13675

7. D.R.Hirschfeldt, K.Lange, R.A.Shore, Induction, bounding, weak combinatorial principles, and the homogeneous model theorem, Mem. Amer. Math. Soc. 249 (1187), 2017. DOI: https://doi.org/10.1090/memo/1187

8. K.Harris, The reverse mathematics of saturated models, preprint (2006).

9. V.Brattka, Weihrauch complexity and the Hagen school of computable analysis, arXiv:2203.06166 (2022). DOI: https://doi.org/10.48550/arXiv.2203.06166

10. V.Brattka, G.Gherardi, A.Pauly, Weihrauch complexity in computable analysis, in: Handbook of Computability and Complexity in Analysis, Springer, Cham, 367–417 (2021). DOI: https://doi.org/10.1007/978-3-030-59234-9_11

11. C.C.Chang, H.J.Keisler, Model theory, North-Holland, Amsterdam, 1973. URL: https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/73/

12. F.G.Dorais, D.D.Dzhafarov, J.L.Hirst, J.R.Mileti, P.Shafer, On uniform relationships between combinatorial problems, Trans. Amer. Math. Soc. 368 (2), 1321–1359 (2016). DOI: https://doi.org/10.1090/tran/6465

13. N.A.Bazhenov, M.I.Marchuk, Degrees of autostability relative to strong constructivi- zations of graphs, Siberian Math. J. 59 (4), 565–577 (2018). DOI: https://doi.org/10.1134/S0037446618040018

14. D.Marker, Model theory: An introduction, Springer, New York, 2002. DOI: https://doi.org/10.1007/b98860

15. W.Hodges, Model theory, Cambridge Univ. Press, Cambridge, 1993. DOI: https://doi.org/10.1017/CBO9780511551574

16. J.G.Rosenstein, Linear orderings, Academic Press, New York, 1982. URL: https://www.sciencedirect.com/bookseries/pure-and-applied-mathematics/vol/98

17. D.Cenzer, V.Harizanov, J.B.Remmel, Σ<sup>0</sup><sub>1</sub> and Π<sup>0</sup><sub>1</sub> equivalence structures, Ann. Pure Appl. Logic 162 (7), 490–503 (2011). DOI: https://doi.org/10.1016/j.apal.2011.01.002


Review

For citations:


Bazhenov N.A., Marchuk M.I., Fiori-Carones M. Elementary embeddability with respect to Weihrauch reducibility. Mathematics and Theoretical Computer Science. 2024;2(4):4-23. (In Russ.) https://doi.org/10.26907/2949-3919.2024.4.4-23

Views: 71


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3919 (Online)