Preview

Mathematics and Theoretical Computer Science

Advanced search

About multiplicatively idempotent semirings with annihilator properties

https://doi.org/10.26907/2949-3919.2024.4.24-34

Abstract

We study one class of semirings close to distributive lattices, namely: semirings with commutative idempotent multiplication, satisfying the identity x + 2xy = x. For such semirings, the equalizing properties are investigated (Theorems 7, 8, 10, Proposition 12). The results obtained can be applied to distributive lattices (Propositions 15, 16, 17). The work provides examples and explanatory notes.

About the Author

E. M. Vechtomov
Vyatka State University
Russian Federation

Evgenii Mikhailovich Vechtomov

36 Moskovskay str., Kirov 610000



References

1. E.M. Vechtomov, Annihilator characterizations of boolean rings and boolean lattices, Math. Notes 53 (2), 124–129 (1993). DOI: https://doi.org/10.1007/BF01208314

2. E.M. Vechtomov, A.A. Petrov, Functional algebra and semirings. Semirings with idempotent multiplication, Lan, Saint Petersburg, 2023 [in Russian]. URL:https://e.lanbook.com/book/302885

3. E.M. Vechtomov, A.A. Petrov, Multiplicatively idempotent semirings with annihilator condition, Russ. Math. 67 (3), 23–31 (2023). DOI: https://doi.org/10.3103/S1066369X23030064

4. J.S. Golan, Semirings and their applications, Kluwer Academic Publ., Dordrecht-Boston-London, 1999. DOI: https://doi.org/10.1007/978-94-015-9333-5

5. G. Birkhoff, Lattice theory, AMS Colloq. Publ., Providence, RI, 1979.

6. G. Grätzer, General lattice theory, Birkh¨ auser Verlag, Basel, 2003.

7. S. Ghosh, A characterization of semirings which are subdirect products of a distributive lattice and a ring, Semigroup Forum 59 (1), 106–120 (1999). DOI: https://doi.org/10.1007/PL00005999


Review

For citations:


Vechtomov E.M. About multiplicatively idempotent semirings with annihilator properties. Mathematics and Theoretical Computer Science. 2024;2(4):24-34. (In Russ.) https://doi.org/10.26907/2949-3919.2024.4.24-34

Views: 59


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3919 (Online)