About multiplicatively idempotent semirings with annihilator properties
https://doi.org/10.26907/2949-3919.2024.4.24-34
Abstract
We study one class of semirings close to distributive lattices, namely: semirings with commutative idempotent multiplication, satisfying the identity x + 2xy = x. For such semirings, the equalizing properties are investigated (Theorems 7, 8, 10, Proposition 12). The results obtained can be applied to distributive lattices (Propositions 15, 16, 17). The work provides examples and explanatory notes.
Keywords
About the Author
E. M. VechtomovRussian Federation
Evgenii Mikhailovich Vechtomov
36 Moskovskay str., Kirov 610000
References
1. E.M. Vechtomov, Annihilator characterizations of boolean rings and boolean lattices, Math. Notes 53 (2), 124–129 (1993). DOI: https://doi.org/10.1007/BF01208314
2. E.M. Vechtomov, A.A. Petrov, Functional algebra and semirings. Semirings with idempotent multiplication, Lan, Saint Petersburg, 2023 [in Russian]. URL:https://e.lanbook.com/book/302885
3. E.M. Vechtomov, A.A. Petrov, Multiplicatively idempotent semirings with annihilator condition, Russ. Math. 67 (3), 23–31 (2023). DOI: https://doi.org/10.3103/S1066369X23030064
4. J.S. Golan, Semirings and their applications, Kluwer Academic Publ., Dordrecht-Boston-London, 1999. DOI: https://doi.org/10.1007/978-94-015-9333-5
5. G. Birkhoff, Lattice theory, AMS Colloq. Publ., Providence, RI, 1979.
6. G. Grätzer, General lattice theory, Birkh¨ auser Verlag, Basel, 2003.
7. S. Ghosh, A characterization of semirings which are subdirect products of a distributive lattice and a ring, Semigroup Forum 59 (1), 106–120 (1999). DOI: https://doi.org/10.1007/PL00005999
Review
For citations:
Vechtomov E.M. About multiplicatively idempotent semirings with annihilator properties. Mathematics and Theoretical Computer Science. 2024;2(4):24-34. (In Russ.) https://doi.org/10.26907/2949-3919.2024.4.24-34