Preview

Mathematics and Theoretical Computer Science

Advanced search

Word transformation using ternary (L, M)-quasigroups

https://doi.org/10.26907/2949-3919.2025.1.12-25

Abstract

We construct an algorithm for transforming words using a set of finite quasigroups in an amount equal to the number of characters of the alphabet. Some properties of ternary (L,M)-quasigroups are given, which play an important role in the analysis and design of cryptographic schemes based on these algebras, such as polynomial completeness, absence of nontrivial congruences.

About the Authors

A. A. Veselova
Volgograd State Socio-Pedagogical University, Department of Higher Mathematics and Physics
Russian Federation

Alexandra Andreevna Veselova

27 V.I. Lenin av., Volgograd 400005



N. A. Shchuchkin
Volgograd State Socio-Pedagogical University, Department of Higher Mathematics and Physics
Russian Federation

Nikolai Alekseevich Shchuchkin

27 V.I. Lenin av., Volgograd 400005



References

1. V.T. Markov, A.V. Mikhalev, A.A. Nechaev, Nonassociative algebraic structures in cryptography and coding, J. Math. Sci. 245 (2), 178–196 (2020). DOI: https://doi.org/10.1007/s10958-020-04685-5

2. M.M. Glukhov, On applications of quasigroups in cryptography, Prikl. Diskret. Mat. (2), 28–32 (2008) [in Russian]. URL: https://www.mathnet.ru/rus/pdm29

3. S. Markovski, D. Gligoroski, V. Bakeva, Quasigroup string processing. I, Makedon. Akad. Nauk. Umet. Oddel. Mat.-Tehn. Nauk. Prilozi 20 (1–2), 13–28 (2001).

4. A. Petrescu, n-quasigroup cryptographic primitives: stream ciphers, Stud. Univ. Babe¸s-Bolyai Inform. 55 (2), 27–34 (2010).

5. V. Dimitrova, H. Mihajloska, An application of ternary quasigroup string transformations, ICT Innovations 2010, Web Proceedings, 251–259 (2010).

6. V.A. Artamonov, Quasigroups and their applications, Chebyshevskii Sb. 19 (2), 111–122 (2018) [in Russian]. DOI: https://doi.org/10.22405/2226-8383-2018-19-2-111-122

7. V.A. Artamonov, S. Chakrabarti, S.K. Pal, Characterization of polynomially complete quasigroups based on Latin squares for cryptographic transformations, Discrete Appl. Math. 200, 5–17 (2016). DOI: https://doi.org/10.1016/j.dam.2015.06.033

8. N.A. Shchuchkin, Application of ternary quasigroups to string transformation, Diskr. Mat. 36 (2), 132—143 (2024) [in Russian]. DOI: https://doi.org/10.4213/dm1809

9. V.D. Belousov, n-quasigroups, ˇStiinca, Kishinev, 1972 [in Russian].

10. V.A. Shcherbacov, A.Kh. Tabarov, D.I. Pu¸sca¸su, On congruences of groupoids closely connected with quasigroups, J. Math. Sci. 163 (6), 785–795 (2009). DOI: https://doi.org/10.1007/s10958-009-9716-4

11. N.P. Sokolov, Introduction to the theory of multidimensional matrices, Naukova dumka, Kiev, 1972.

12. H.J. Ryser, Permanents and systems of distinct representatives, in: Combin. Math. Appl. (Proc. Conf., Univ. North Carolina, Chapel Hill, N.C., 1967), Univ. North Carolina Pr., Chapel Hill, 55–70 (1969).

13. G.B. Belyavskaya, T-quasigroups and the center of the quasigroup, Matem. Issled. 111, 24–43 (1989) [in Russian].

14. V.A. Artamonov, S. Chakrabarti, S. Gangopadhyay, S.K. Pal, Latin squares of polynomially complete quasigroups and quasigroups generated by shifts, Quasigroups and Related Systems 21 (2), 117–130 (2013).

15. J. Hagemann, C. Herrmann, Arithmetically locally equational classes and representation of partial functions, Colloq. Math. Soc. J´anos Bolyai 29, 345–360 (1982).


Review

For citations:


Veselova A.A., Shchuchkin N.A. Word transformation using ternary (L, M)-quasigroups. Mathematics and Theoretical Computer Science. 2025;3(1):12-25. (In Russ.) https://doi.org/10.26907/2949-3919.2025.1.12-25

Views: 54


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3919 (Online)