Word transformation using ternary (L, M)-quasigroups
https://doi.org/10.26907/2949-3919.2025.1.12-25
Abstract
We construct an algorithm for transforming words using a set of finite quasigroups in an amount equal to the number of characters of the alphabet. Some properties of ternary (L,M)-quasigroups are given, which play an important role in the analysis and design of cryptographic schemes based on these algebras, such as polynomial completeness, absence of nontrivial congruences.
About the Authors
A. A. VeselovaRussian Federation
Alexandra Andreevna Veselova
27 V.I. Lenin av., Volgograd 400005
N. A. Shchuchkin
Russian Federation
Nikolai Alekseevich Shchuchkin
27 V.I. Lenin av., Volgograd 400005
References
1. V.T. Markov, A.V. Mikhalev, A.A. Nechaev, Nonassociative algebraic structures in cryptography and coding, J. Math. Sci. 245 (2), 178–196 (2020). DOI: https://doi.org/10.1007/s10958-020-04685-5
2. M.M. Glukhov, On applications of quasigroups in cryptography, Prikl. Diskret. Mat. (2), 28–32 (2008) [in Russian]. URL: https://www.mathnet.ru/rus/pdm29
3. S. Markovski, D. Gligoroski, V. Bakeva, Quasigroup string processing. I, Makedon. Akad. Nauk. Umet. Oddel. Mat.-Tehn. Nauk. Prilozi 20 (1–2), 13–28 (2001).
4. A. Petrescu, n-quasigroup cryptographic primitives: stream ciphers, Stud. Univ. Babe¸s-Bolyai Inform. 55 (2), 27–34 (2010).
5. V. Dimitrova, H. Mihajloska, An application of ternary quasigroup string transformations, ICT Innovations 2010, Web Proceedings, 251–259 (2010).
6. V.A. Artamonov, Quasigroups and their applications, Chebyshevskii Sb. 19 (2), 111–122 (2018) [in Russian]. DOI: https://doi.org/10.22405/2226-8383-2018-19-2-111-122
7. V.A. Artamonov, S. Chakrabarti, S.K. Pal, Characterization of polynomially complete quasigroups based on Latin squares for cryptographic transformations, Discrete Appl. Math. 200, 5–17 (2016). DOI: https://doi.org/10.1016/j.dam.2015.06.033
8. N.A. Shchuchkin, Application of ternary quasigroups to string transformation, Diskr. Mat. 36 (2), 132—143 (2024) [in Russian]. DOI: https://doi.org/10.4213/dm1809
9. V.D. Belousov, n-quasigroups, ˇStiinca, Kishinev, 1972 [in Russian].
10. V.A. Shcherbacov, A.Kh. Tabarov, D.I. Pu¸sca¸su, On congruences of groupoids closely connected with quasigroups, J. Math. Sci. 163 (6), 785–795 (2009). DOI: https://doi.org/10.1007/s10958-009-9716-4
11. N.P. Sokolov, Introduction to the theory of multidimensional matrices, Naukova dumka, Kiev, 1972.
12. H.J. Ryser, Permanents and systems of distinct representatives, in: Combin. Math. Appl. (Proc. Conf., Univ. North Carolina, Chapel Hill, N.C., 1967), Univ. North Carolina Pr., Chapel Hill, 55–70 (1969).
13. G.B. Belyavskaya, T-quasigroups and the center of the quasigroup, Matem. Issled. 111, 24–43 (1989) [in Russian].
14. V.A. Artamonov, S. Chakrabarti, S. Gangopadhyay, S.K. Pal, Latin squares of polynomially complete quasigroups and quasigroups generated by shifts, Quasigroups and Related Systems 21 (2), 117–130 (2013).
15. J. Hagemann, C. Herrmann, Arithmetically locally equational classes and representation of partial functions, Colloq. Math. Soc. J´anos Bolyai 29, 345–360 (1982).
Review
For citations:
Veselova A.A., Shchuchkin N.A. Word transformation using ternary (L, M)-quasigroups. Mathematics and Theoretical Computer Science. 2025;3(1):12-25. (In Russ.) https://doi.org/10.26907/2949-3919.2025.1.12-25