Graphs of trigonal curves and rigid isotopies of singular real algebraic curves of bidegree (4, 3) on a hyperboloid
https://doi.org/10.26907/2949-3919.2025.1.26-51
Abstract
A rigid isotopy of real algebraic curves of a certain class is a path in the space of curves of this class. Our study completes the rigid isotopic classification of nonsingular real algebraic curves of bidegree (4,3) on a hyperboloid, started by the author in his earlier works. Missing proofs of the uniqueness of the connected components for 16 classes of real algebraic curves of bidegree (4,3) having a single node or a cusp are given. The main technical tools are graphs of real trigonal curves on Hirzebruch surfaces.
About the Author
V. I. ZvonilovRussian Federation
Victor Ivanovich Zvonilov
23 Gagarin av., Nizhny Novgorod, 603950
References
1. V.I. Zvonilov, Rigid isotopy classification of real algebraic curves of bidegree (4, 3) on a hyperboloid, Vestn. Syktyvkar. Univ. Ser. 1 Mat. Mekh. Inform. (3), 81–88 (1999) [in Russian].
2. A. Degtyarev, I. Itenberg, V. Kharlamov, Real Enriques surfaces, Lecture Notes in Math. 1746, Springer-Verlag, Berlin, 2000. DOI: https://doi.org/10.1007/BFb0103960
3. V.I. Zvonilov, Appendix to: Rigid isotopy classification of real algebraic curves of bidegree (4, 3) on a hyperboloid, Vestn. Syktyvkar. Univ. Ser. 1 Mat. Mekh. Inform. (5), 239–242 (2003) [in Russian].
4. V.A. Rokhlin, Complex topological characteristics of real algebraic curves, Russian Math. Surveys 33 (5), 85–88 (1978). DOI: https://doi.org/10.1070/RM1978v033n05ABEH002514
5. O.Ya. Viro, Progress in the topology of real algebraic varieties over the last six years, Russian Math. Surveys 41 (3), 55–82 (1986). DOI: https://doi.org/10.1070/RM1986v041n03ABEH003317
6. V.I. Zvonilov, Complex topological invariants of real algebraic curves on a hyperboloid and on an ellipsoid, St. Petersburg Math. J. 3 (5), 1023–1042 (1992).
7. A. Degtyarev, I. Itenberg, V. Kharlamov, On deformation types of real elliptic surfaces, Amer. J. Math. 130 (6), 1561–1627 (2008). DOI: https://doi.org/10.1353/ajm.0.0029
8. V.I. Zvonilov, Maximally inflected real trigonal curves on Hirzebruch surfaces, In: Topology, Geometry, and Dynamics: V.A. Rokhlin-Memorial, Contemp. Math. 772, 331–345 (2021). DOI: http://dx.doi.org/10.1090/conm/772/15498
9. F. Klein, Gesammelte mathematische abhandlungen II, Springer-Verlag Berlin, Heidelberg, 1922.
10. M. Nagata, On rational surfaces I. Irreducible curves of arithmetic genus 0 or 1, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 32 (3), 351–370 (1960). DOI: https://doi.org/10.1215/kjm/1250776405
11. A. Degtyarev, Topology of algebraic curves. An approach via dessins d’enfants, De Gruyter Studies in Mathematics 44, Walter de Gruyter & Co., Berlin, 2012. DOI: https://doi.org/10.1515/9783110258424
12. A.J. Puentes, Rigid isotopy classification of generic rational curves of degree 5 in the real projective plane, Geom. Dedicata 211, 1–70 (2021). DOI: https://doi.org/10.1007/s10711-020-00540-8
13. A. Degtyarev, I. Itenberg, V. Zvonilov, Real trigonal curves and real elliptic surfaces of type I, J. Reine Angew. Math. 686, 221–246 (2014). DOI: https://doi.org/10.1515/crelle-2012-0020
14. V.I. Zvonilov, Rigid isotopies of trinomial curves with the maximal number of ovals, Vestn. Syktyvkar. Univ. Ser. 1 Mat. Mekh. Inform. (6), 45–66 (2006) [in Russian].
Review
For citations:
Zvonilov V.I. Graphs of trigonal curves and rigid isotopies of singular real algebraic curves of bidegree (4, 3) on a hyperboloid. Mathematics and Theoretical Computer Science. 2025;3(1):26-51. (In Russ.) https://doi.org/10.26907/2949-3919.2025.1.26-51