Preview

Mathematics and Theoretical Computer Science

Advanced search

Levi classes of quasivarieties of 2-nilpotent groups

https://doi.org/10.26907/2949-3919.2025.1.64-77

Abstract

The Levi class L(M) generated by the class of groups M is the class of all groups in which the normal closure of each cyclic subgroup belongs to M.

Let p be a prime number, p ̸= 2, s be a natural number, s 2, and s > 2 for p = 3; Hps be a free group of rank 2 in the variety of nilpotent groups of class 2 of exponent ps with commutator subgroup of exponent p; Z is an innite cyclic group; q{Hps , Z} is a quasivariety generated by the set of groups {Hps , Z}. We nd a basis of quasi-identities of the Levi class L(q{Hps , Z}) and establish that there exists a continuous set of quasivarieties K such that L(K) = L(q{Hps , Z}).

About the Author

S. A. Shakhova
Altai State University
Russian Federation

Svetlana Aleksandrovna Shakhova

61 Lenina av., Barnaul 656049



References

1. F.W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. (N.S.) 6, 87–97 (1942).

2. L.C. Kappe, On Levi-formations, Arch. Math. 23, 561–572 (1972). DOI: https://doi.org/10.1007/BF01304934

3. L.C. Kappe, R.F. Morse, Groups with 3-abelian normal closures, Arch. Math. 51 (2), 104– 110 (1988). DOI: https://doi.org/10.1007/BF01206466

4. A.I. Budkin, Levi quasivarieties, Siberian Math. J. 40 (2), 225–228 (1999). DOI: https://doi.org/10.1007/s11202-999-0003-x

5. A.I. Budkin, Levi classes generated by nilpotent groups, Algebra Logic 39 (1), 363–369 (1999). DOI: https://doi.org/10.1023/A:1010224301576

6. A.I. Budkin, L. V. Taranina, On Levi quasivarieties generated by nilpotent groups, Siberian Math. J. 41 (2), 218–223 (2000). DOI: https://doi.org/10.1007/BF02674590

7. R.F. Morse, Levi-properties generated by varieties, In: The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions, Contemp. Math. 169, 467–474 (1994). DOI: http://dx.doi.org/10.1090/conm/169/01675

8. A.I. Budkin, V.A. Gorbunov, On the theory of quasivarieties of algebraic systems, Algebra i Logika 14 (2), 123–142 (1975) [in Russian].

9. V.V. Lodeyshchikova, On Levi quasivarieties generated by nilpotent groups, Izv. AltGU (1), 26–29 (2009).

10. V.V. Lodeyshchikova, The Levi classes generated by nilpotent groups, Siberian Math. J. 51 (6), 1075–1080 (2010). DOI: https://doi.org/10.1007/s11202-010-0105-5

11. V.V. Lodeyshchikova, Levi quasivarieties of exponent ps, Algebra Logic 50 (1), 17–28 (2011). DOI: https://doi.org/10.1007/s10469-011-9121-1

12. S.A. Shakhova, The axiomatic rank of Levi classes, Algebra Logic 57 (5), 381–391 (2018). DOI: https://doi.org/10.1007/s10469-018-9510-9

13. S.А. Shakhova, The axiomatic rank of the Levi class generated by the almost Abelian quasivariety of nilpotent groups, Lobachevskii J. Math. 41 (9), 1680–1683 (2020). DOI: https://doi.org/10.1134/S1995080220090243

14. S.A. Shakhova, Levi classes of quasivarieties of groups with commutator subgroup of order p, Algebra Logic 60 (5), 336–347 (2021). DOI: https://doi.org/10.1007/s10469-021-09659-3

15. V.V. Lodeyshchikova, S.A. Shakhova, Levi classes of quasivarieties of nilpotent groups of exponent ps, Algebra Logic 61 (1), 54–66 (2022). DOI: https://doi.org/10.1007/s10469-022-09674-y

16. M. I. Kargapolov, Ju.I. Merzljakov, Fundamentals of the theory of groups, Graduate Texts in Mathematics 62, Springer-Verlag, New York–Berlin, 1979.

17. A.I. Mal’cev, Algebraic Systems, Springer-Verlag, New York–Heidelberg, 1973. DOI: https://doi.org/10.1007/978-3-642-65374-2

18. A.I. Budkin, Quasivarieties of groups, Izd-vо Altai State Univ., Barnaul, 2002 [in Russian].

19. V.A. Gorbunov, Algebraic theory of quasivarieties, Springer New York, New York, 1998.


Review

For citations:


Shakhova S.A. Levi classes of quasivarieties of 2-nilpotent groups. Mathematics and Theoretical Computer Science. 2025;3(1):64-77. (In Russ.) https://doi.org/10.26907/2949-3919.2025.1.64-77

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3919 (Online)