Preview

Mathematics and Theoretical Computer Science

Advanced search

Feynman–Kac formulas for solutions of evolution equations. Part I. Generalized random processes and operator families

https://doi.org/10.26907/2949-3919.2025.2.85-135

Abstract

A generalized random process with values in a measurable space is defined as a complex-valued finite additive cylindrical measure on the space of trajectories with values in the measurable space. Using this extension of the concept of a random process, we aim to obtain a representation of solutions to the evolutionary equation by averaging functionals on the space of trajectories of a random process. For this purpose, a bijective mapping of the space of operator valued functions into a set of complex valued finite additive cylindrical measures on the trajectory space is constructed and investigated. Limit theorems for generalized random processes are obtained. In the second part of the survey, the application of the constructed bijective mapping to the obtaining of perturbed semigroups and evolutionary families of operators in the form of Feynman–Kac formulas will be considered.

About the Authors

Yu. N. Orlov
Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)
Russian Federation
Yuri Nikolaevich Orlov

4 Miysskaya sq., Moscow 125047, 



V. Zh Sakbaev
Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)
Russian Federation
Vsevolod Zhanovich Sakbaev

4 Miysskaya sq., Moscow 125047, 



References

1. M. Reed, B. Simon, Methods of modern mathematical physics. II: Fourier analysis, selfadjointness, Academic Press, New York–London, 1975.

2. O.G. Smolyanov, E.T. Shavgulidze, Continual integrals, URSS, M., 2015 [in Russian].

3. A.D. Venttsel’, Course of random prosesses theory, Nauka. Fizmatlit, M., 1996 [in Russian].

4. R.P. Feynman, An operation calculus having applications in quantum electrodynamics, Phys. Rev. (2), 84, 108–128 (1951). DOI: https://doi.org/10.1103/PhysRev.84.108

5. R.P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Modern Physics 20, 367–387 (1948). DOI: https://doi.org/10.1103/RevModPhys.20.367

6. E. Nelson, Feynman integrals and the Schrodinger equation, J. Mathematical Phys. 5 (3), 332–343 (1964). DOI: https://doi.org/10.1063/1.1704124

7. B. Simon, Functional integration and quantum physics, Academic Press, New York– London, 1979.

8. E.T. Shavgulidze, Special selfadjoint extensions of Schro¨dinger diff ential operators by means of Feynman integrals, Dokl. Akad. Nauk 348 (6), 743–745 (1996) [in Russian]. URL: https://www.mathnet.ru/rus/dan4093

9. V.P. Maslov, A.M. Chebotarev, The defi of Feynman’s functional integral in the P-representation, Dokl. Akad. Nauk SSSR 229 (1), 37–38 (1976). URL: https://www.mathnet.ru/rus/dan40458

10. Yu.N. Orlov, V.Z. Sakbaev, E.V. Shmidt, Compositions of random processes in a Hilbert space and its limit distribution, Lobachevskii J. Math. 44 (4), 1432–1447 (2023). DOI: http://doi.org/10.1134/S1995080223040212

11. Yu.N. Orlov, V.Z. Sakbaev, Feynman–Kac formulas for diff ence-diff ential equations of retarded type, Lobachevskii J. Math. 45 (6), 2567–2576 (2024). DOI: https://doi.org/10.1134/S1995080224602790

12. V.Zh. Sakbaev, N. Tsoy, Analogue of Chernoff theorem for cylindrical pseudomeasures, Lobachevskii J. Math. 41 (12), 2369–2382 (2020). DOI: https://doi.org/10.1134/S1995080220120306

13. V.Zh. Sakbaev, E.V. Shmidt, V. Shmidt, Limit distribution for compositions of random operators, Lobachevskii J. Math. 43 (7), 1740–1754 (2022). DOI: https://doi.org/10.1134/S199508022210033X

14. V.P. Maslov, Complex Markov chains and continual Feynman integral, Nauka, M., 1976 [in Russian].

15. A.V. Bulinskii, A.N. Shiryaev, Random processes theory, Fizmatlit, M., 2005.

16. V.I. Bogachev, N.V. Krylov, M. Ro¨ckner, Elliptic and parabolic equations for measures, Russian Math. Surveys 64 (6), 973–1078 (2009). DOI: https://doi.org/10.1070/RM2009v064n06ABEH004652

17. V.I. Bogachev, Measure theory. Vol. I, Springer-Verlag, Berlin, 2007. DOI: https://doi.org/10.1007/978-3-540-34514-5

18. Yu.L. Daletskii, S.V. Fomin, Measures and diff ential equations in infi space, Kluwer Academic Publishers Group, Dordrecht, 1991.

19. L. Accardi, Y.G. Lu, I.V. Volovich, Quantum theory and its stochastic limit, SpringerVerlag, Berlin, 2002. DOI: https://doi.org/10.1007/978-3-662-04929-7

20. Yu.N. Orlov, V.Zh. Sakbaev, O.G. Smolyanov, Feynman formulas for nonlinear evolution equations, Dokl. Math. 96 (3), 574–577 (2017). DOI: https://doi.org/10.1134/S1064562417060126

21. T. Liggett, Interacting particle systems, Springer-Verlag, Berlin, 2005. DOI: https://doi.org/10.1007/b138374

22. A.D. Venttsel’, M.I. Freidlin, Fluctuations in dynamical systems subject to small random perturbations, Nauka, M., 1979 [in Russian].

23. E.B. Dynkin, Markov processes. Vols. I, II, Springer-Verlag, Berlin, 1965. DOI: https://doi.org/10.1007/978-3-662-00031-1 DOI: https://doi.org/10.1007/978-3-662-25360-1

24. J. Zinn-Justin, Path integrals in quantum mechanics, Oxford University Press, Oxford, 2010. DOI: https://doi.org/10.1093/acprof:oso/9780198566748.001.0001

25. C. Bender, Ya.A. Butko, Stochastic solutions of generalized time-fractional evolution equations, Fract. Calc. Appl. Anal. 25 (2), 488–519 (2022). DOI: https://doi.org/10.1007/s13540-022-00025-3

26. C. Bender, M. Bormann, Ya.A. Butko, Subordination principle and Feynman–Kac formulae for generalized time-fractional evolution equations, Fract. Calc. Appl. Anal. 25 (5), 1818– 1836 (2022). DOI: https://doi.org/10.1007/s13540-022-00082-8

27. Yu.V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Theory Probab. Appl. 1 (2), 157–214 (1956). DOI: https://doi.org/10.1137/1101016

28. J. Jacod, A.N. Shiryaev, Limit theorems for stochastic processes, Springer-Verlag, Berlin, 2003. DOI: https://doi.org/10.1007/978-3-662-05265-5

29. S.A. Molchanov, V.N. Tutubalin, A.D. Ventzel’, Asymptotic problems in probability theory and the theory of random media, Theory Probab. Appl. 35 (1), 87–93 (1990). DOI: https://doi.org/10.1137/1135008

30. A.D. Venttsel’, Refi of the central limit theorem for stationary processes, Theory Probab. Appl. 34 (3), 402–415 (1989). DOI: https://doi.org/10.1137/1134049

31. W. Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, New York-London-Sydney, 1971.

32. J. Gough, Yu.N. Orlov, V.Z. Sakbaev, O.G. Smolyanov, Random quantization of Hamiltonian systems, Dokl. Math. 103 (3), 122–126 (2021). DOI: https://doi.org/10.1134/S106456242103008X

33. Yu.N. Orlov, V.Z. Sakbaev, E.V. Shmidt, Operator approach to weak convergence of measures and limit theorems for random operators, Lobachevskii J. Math. 42 (10), 2413– 2426 (2021). DOI: https://doi.org/10.1134/S1995080221100188

34. V.Zh. Sakbaev, Averaging of random flows of linear and nonlinear maps, J. Phys.: Conf. Ser. 990, art. 012012 (2018). DOI: https://doi.org/10.1088/1742-6596/990/1/012012

35. V.I. Bogachev, O.G. Smolyanov, Real and functional analysis, Springer, Cham, 2020. DOI: https://doi.org/10.1007/978-3-030-38219-3

36. P.R. Chernoff, Note on product formulas for operator semigroups, J. Functional Analysis 2 (2), 238–242 (1968). DOI: https://doi.org/10.1016/0022-1236(68)90020-7

37. M.A. Berger, Central limit theorem for products of random matrices, Trans. Amer. Math. Soc. 285 (2), 777–803 (1984). DOI: https://doi.org/10.1090/S0002-9947-1984-0752503-3

38. V.M. Busovikov, V.Zh. Sakbaev, Sobolev spaces of functions on Hilbert space endowed with shift-invariant measures and approximations of semigroups, Izv. Math. 84 (4), 694–721 (2020). DOI: https://doi.org/10.1070/IM8890

39. V.Zh. Sakbaev, Averaging of random walks and shift-invariant measures on Hilbert space, Theoret. and Math. Phys. 191 (3), 886–909 (2017). DOI: https://doi.org/10.1134/S0040577917060083

40. V.I. Averbukh, O.G. Smolyanov, S.V. Fomin, Generalized functions and diff ential equations in linear spaces. I. Differentiable measures, Tr. Mosk. Mat. Obs. 24, 133–174 (1971) [in Russian]. URL: https://www.mathnet.ru/rus/mmo249

41. A. Weil, L’int´egration dans les groupes topologiques et ses applications, Hermann, Paris, 1940 [in French].

42. A.M. Vershik, Does there exist a Lebesgue measure in the infinite-dimensiona space?, Proc. Steklov Inst. Math. 259, 248–272 (2007). DOI: https://doi.org/10.1134/S0081543807040153

43. V.Zh. Sakbaev, Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations, J. Math. Sci. 241 (4), 469–500 (2019). DOI: https://doi.org/10.1007/s10958-019-04438-z

44. V.Zh. Sakbaev, Flows in infi ite-dimensional phase space equipped with a fi invariant measure, Mathematics 11 (5), art. 1161 (2023). DOI: https://doi.org/10.3390/math11051161

45. R. Baker, Lebesgue measure on R∞, Proc. Amer. Math. Soc. 113(4), 1023–1029 (1991). DOI: https://doi.org/10.1090/S0002-9939-1991-1062827-X

46. R.L. Baker, Lebesgue measure on R∞. II, Proc. Amer. Math. Soc. 132 (9), 2577–2591 (2004). DOI: https://doi.org/10.1090/S0002-9939-04-07372-1

47. T. Gill, A. Kirtadze, G. Pantsulaia, A. Plichko, Existence and uniqueness of translation invariant measures in separable Banach spaces, Funct. Approx. Comment. Math. 50 (2), 401–419 (2014). DOI: http://doi.org/10.7169/facm/2014.50.2.12

48. D.V. Zavadsky, Shift-invariant measures on sequence spaces, Proc. MIPT 9 (4), 142–148 (2017) [in Russian].

49. U. Grenander, Probabilities on algebraic structures, John Wiley & Sons, New York-London, 1968.

50. V.I. Oseledets, Markov chains, skew products and ergodic theorems for “general” dynamic systems, Theory Probab. Appl. 10 (3), 499–504 (1965). DOI: https://doi.org/10.1137/1110062

51. A.V. Skorokhod, Products of independent random operators, Russ. Math. Surv. 38 (4), 291–318 (1983). DOI: https://doi.org/10.1070/RM1983v038n04ABEH004213

52. Yu.N. Orlov, V.Zh. Sakbaev, O.G. Smolyanov, Feynman formulas and the law of large numbers for random one-parameter semigroups, Proc. Steklov Inst. Math. 306, 196–211 (2019). DOI: https://doi.org/10.1134/S0081543819050171

53. O.G. Smolyanov, A.G. Tokarev, A. Truman, Hamiltonian Feynman path integrals via the Chernoff formula, J. Math. Phys. 43 (10), 5161–5171 (2002). DOI: https://doi.org/10.1063/1.1500422

54. H.H. Kuo, N. Obata, K. Saito, Diagonalization of the L´evy Laplacian and related stable processes, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5 (3), 317–331 (2002). DOI: https://doi.org/10.1142/S0219025702000882

55. I.D. Remizov, Quasi-Feynman formulas – a method of obtaining the evolution operator for the Schro¨dinger equation, J. Funct. Anal. 270 (12), 4540–4557 (2016). DOI: https://doi.org/10.1016/j.jfa.2015.11.017

56. B.O. Volkov, Levy Laplacian on manifold and Yang-Mills heat flow, Lobachevskii J. Math. 40 (10), 1619–1630 (2019). DOI: https://doi.org/10.1134/S1995080219100305

57. B.O. Volkov, L´evy Laplacians and instantons on manifolds, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23 (2), art. 2050008 (2020). DOI: https://doi.org/10.1142/S0219025720500083

58. T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss. 132, SpringerVerlag, Berlin-New York, 1976.

59. P. Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York, 1999.

60. V.I. Bogachev, Measure theory. Vol. II, Springer-Verlag, Berlin, 2007. DOI: https://doi.org/10.1007/978-3-540-34514-5

61. V.Zh. Sakbaev, D.V. Zavadskii, Diffusion on a Hilbert space equipped with a shift and rotation-invariant measure, Proc. Steklov Inst. Math. 306 (1), 102–119 (2019). DOI: https://doi.org/10.1134/S0081543819050109


Review

For citations:


Orlov Yu.N., Sakbaev V.Zh. Feynman–Kac formulas for solutions of evolution equations. Part I. Generalized random processes and operator families. Mathematics and Theoretical Computer Science. 2025;3(2):85-135. (In Russ.) https://doi.org/10.26907/2949-3919.2025.2.85-135

Views: 40


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3919 (Online)