On the index set of punctually categorical finitely generated structures
Abstract
The paper is devoted to an estimation of the index set of finitelky generated structures which have precisely one punctual presentation up to punctual isomorphisms. It is shown that this index set is Π03-complete
About the Author
A. A. KurmachevaRussian Federation
Department of Algebra and Mathematical Logic
18 Kremlyovskaya str., Kazan 420008
References
1. I. Sh. Kalimullin, A. G. Melnikov, K. M. Ng, Algebraic structures computable without delay, Theoret. Comput. Sci. 674, 73–98 (2017). DOI: https://doi.org/10.1016/j.tcs.2017.01.029
2. P. E. Alaev, Polynomially computable structures with finitely many generators, Algebra and Logic 59 (3), 266–272 (2020). DOI: https://doi.org/10.1007/s10469-020-09598-5
3. R. I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspectives in math. logic. Springer-Verlag, Berlin, Heidelberg, New York, etc., 1987. URL: https://link.springer.com/book/9783540666813
4. N. A. Bazhenov, R. G. Downey, A. G. Melnikov, I. Sh. Kalimullin, Foundations of online structure theory, Bull. Symb. Log. 25 (2), 141–181 (2019). DOI: https://doi.org/10.1017/bsl.2019.20
5. I. Sh. Kalimullin, Constructing punctually categorical semigroups, Algebra and Logic 59 (5), 408–411 (2020). DOI: https://doi.org/10.1007/s10469-020-09614-8
Review
For citations:
Kurmacheva A.A. On the index set of punctually categorical finitely generated structures. Mathematics and Theoretical Computer Science. 2023;1(1):69-77. (In Russ.)