Preview

Mathematics and Theoretical Computer Science

Advanced search

Isometric realisations of Lobachevsky plane in Rn, n ≥ 4

Abstract

The article is written following the talk by author on the satellite conference “Lobachevsky readings” held in Kazan in July 2022. The talk has presented a short survey of works concerning the history and results of investigations devoted to the realisation of the complete Lobachevsky plane as a two-dimensional surface in a multidimensional Euclidean space. For the present situation the best result for the minimal dimension of ambient space is given by a theorem affirming that Lobachevsky plane can be immersed in R4 as a piecewise analytic surface with C0.1 smoothness in whole

About the Author

I. Kh. Sabitov
Moscow State University
Russian Federation

Faculty of Mechanics and Mathematics

1 Leninskie Gory, Moscow, 119991



References

1. E. Beltrami, Saggio di interpretazione della geometria non-euclidea, Giorn. di Mat. 6, 284–312 (1868). URL: https://zbmath.org/01.0275.02

2. D. Hilbert, ¨ Uber Fl¨achen von konstanter Gaußsch Kr¨ummung, Trans. Amer. Math. Soc. 1 (2), 87–99 (1901). DOI: https://doi.org/10.1007/978-3-642-52012-9_30

3. N.V. Efimov, Appearance of singularities on the surfaces of negative curvature, Math. Sbonik 64 (2), 286–320 (1964) [in Russian]. URL: https://www.mathnet.ru/rus/sm4448

4. E.R. Rozendorn, Weakly irregular surfaces of negative curvature, Russ. Math. Surv. 21 (5), 57–112 (1966). DOI: https://doi.org/10.1070/RM1966v021n05ABEH004174

5. L. Bieberbach, Eine singularit¨atenfreie Fl¨ache konstanter negative Kr¨ummung in Hilbertschen Raume, Comment. Math. Helv. 4, 248–255 (1932). DOI: https://doi.org/10.1007/BF01202719

6. S.B. Kadomcev, The impossibility of some special isometric immersions of Lobaˇcevski˘i spaces, Math. USSR Sb. 35, 461–480 (1979). DOI: https://doi.org/10.1070/SM1979v035n04ABEH001555

7. E.R. Rozendorn, Surfaces of Negative Curvature, in: Geometry III, Encyclopaedia of Mathematical Sciences, Vol. 48, Springer, Berlin, Heidelberg, 1992. DOI: https://doi.org/10.1007/978-3-662-02751-6_2

8. D. Blanuˇsa, ¨ Uber die Einbettung hiperbolischer R¨aume im euklidische R¨aume, Monatsh. Math. 59 (3), 217–229 (1955). DOI: https://doi.org/10.1007/BF01303796

9. E.R. Rozendorn, Realization of the metric ds2 = du2 + f(u)dv2 in five-dimensional Euclidean space, Dokl. Akad. Nauk ArmSSSR 30 (4), 196–199 (1960) [in Russian]. [10] I.Kh. Sabitov, Isometric immersions of the Lobachevskii plane in E4, Sib. Math. J. 30 (5), 805–811 (1989). DOI: https://doi.org/10.1007/BF00971274

10. M. Gromov, Partial differential relations, Springer, Berlin, 1986.

11. I.Kh. Sabitov, A complete list of central symmetric forms of two dimensional metrics of constant curvature, Russian Math. (Iz. VUZ) 38 (3), 63–66 (1994).

12. F. Schur, Ueber die Deformation der R¨aume constanten Riemann’schen Kr¨ummungsmaasses, Math. Ann. 27, 163–176 (1886). DOI: https://doi.org/10.1007/BF01452055

13. Yu.A. Aminov, The Geometry of Submanifolds, CRC Press, London, 2001. DOI: https://doi.org/10.1201/9781482296860

14. A.A. Borisenko, Interior and Exterior Geometry of Multidimensional Submanifolds (Ekzamen, M., 2003) [in Russian].

15. E.G.Poznyak, E.V. Shikin, Surfaces of negative curvature, J. Soviet Math. 5 (6), 865–887 (1976). DOI: https://doi.org/10.1007/BF01085151

16. E.V. Shikin, Problem of isometric immersions and hyperbolic Monge–Amp´er equation, Proceedings of Math. Inst. 14, 245–258 (1989) [in Russian]. URL: https://www.mathnet.ru/rus/mt506

17. I.N.Vekua, Generalised Analytic Functions, Pergamon, 1962. DOI: https://doi.org/10.1016/C2013-0-05289-9

18. B.A. Rozenfeld, Non-Euclidean geometries, Gostekhizdat, M., 1955.

19. A.D. Sakharov, Cosmological transitions with changes in the signature of the metric, Sov. Phys. JETP 60 (2), (1984), 214–218. URL: http://jetp.ras.ru/cgi-bin/e/index/e/60/2/p214?a=list


Review

For citations:


Sabitov I.Kh. Isometric realisations of Lobachevsky plane in Rn, n ≥ 4. Mathematics and Theoretical Computer Science. 2023;1(2):22-34. (In Russ.)

Views: 133


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3919 (Online)