Anabelian Arithmetic Geometry – A new Geometry of Forms and Numbers: Inter-universal Teichm¨uller theory or “beyond Grothendieck’s vision”
Аннотация
This text presents an informal overview on how, in accordance with some deeply rooted principles of the philosophy of Alexander Grothendieck concerning the practice of mathematics, recent progress in anabelian arithmetic geometry led to the Inter-universal Teichm¨uller theory (IUT) of Mochizuki Shinichi. The new geometry of monoids furnished by IUT may be understood as the result of a seminal encounter between Grothendieck’s principle of resolving the tension between the discrete and continuous realms, on the one hand, and p-adic Hodge theory and height theory, on the other, and opens a new research frontier that goes beyond the Grothendieck geometry of rings-schemes by providing a unifying framework for Diophantine and anabelian arithmetic geometry
Список литературы
1. [Kr¨o06] R. Kr¨omer, La «machine de Grothendieck» se fonde-t-elle seulement sur des vocables m´etamath´ematiques? Bourbaki et les cat´egories au cours des ann´ees cinquante, Revue d’histoire des math. 12 (1), 155–198 (2006).
2. [Mar22] J. Marquis, The Structuralist Mathematical Style: Bourbaki as a Case Study, in: Boston Stud. Philos. Hist. Sci., 199–231 (2022).
3. [McL07] C. McLarty, The rising sea: Grothendieck on simplicity and generality, in: Episodes in the history of modern algebra (1800–1950), Hist. Math. 32, 301–325 (Amer. Math. Soc., Providence, RI, 2007). DOI: https://doi.org/10.1093/bjps/axl030
4. [R&S] A. Grothendieck, R´ecoltes et semailles, R´eflexions et t´emoignage sur un pass´e de math´ematicien, Gallimard, pp. 717+1926 (2022). [Sha18] G. Shabbat, The divine spark, To the memory of Vladimir Voevodsky, Troitsky variant 249 (2018). URL: https://www.math.ias.edu/Voevodsky/other/Orlova.pdf
5. [Chap23] Proceedings of the conference “Grothendieck, a Multifarious Giant: Mathematics, Logic and Philosophy” (to be publ., 2023). URL: https://www.chapman.edu/scst/conferences-and-events/grothendieck-conference.aspx
6. [Esq] A. Grothendieck, Esquisse d’un programme, in: Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser. 242, 5–48, with an English translation on pp. 243–283 (Cambridge Univ. Press, Cambridge, 1997). URL: https://mathscinet.ams.org/mathscinet-getitem?mr=MR1483107
7. [Voe91] V.A. Voevodsky, Galois representations connected with hyperbolic curves, Izv. Akad. Nauk SSSR Ser. Mat. 55 (6), 1331–1342 (1991). DOI: https://doi.org/10.1070/IM1992v039n03ABEH002248
8. [SV90] G. B. Shabat, V.A. Voevodsky, Drawing curves over number fields, in: The Grothendieck Festschrift, V. III, Progr. Math. 88, 199–227 (Birkh¨auser Boston, Boston, MA, 1990). DOI: https://doi.org/10.1007/978-0-8176-4576-2_8
9. [Gro97] A. Grothendieck, Brief an G. Faltings, in: Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser. 242, 49–58, with an English translation on pp. 285–293 (Cambridge Univ. Press, Cambridge, 1997). URL: https://mathscinet.ams.org/mathscinet-getitem?mr=MR1483108
10. [Sti11] J. Stix, The Brauer-Manin obstruction for sections of the fundamental group, J. Pure Appl. Algebra 215 (6), 1371–1397 (2011). DOI: https://doi.org/10.1016/j.jpaa.2010.08.017
11. [MR4225476] M. Sa¨ıdi, Review of the four Inter-universal Teichmuller theory papers of S. Mochizuki, Math. Reviews 4225476 (2022).
12. [EssLgc] S. Mochizuki, On the Essential Logical Structure of Inter-universal Teichmuller Theory in terms of logical and “∧”/logical or “∨” relations: report on the occasion of the publication of the four main papers on Inter-universal Teichmuller theory, 2022. URL: https://www.kurims.kyoto-u.ac.jp/~motizuki/papers-english.html
13. [LMG] A. Grothendieck, La “longue Marche” `a travers la th´eorie de Galois, Inst. Montpelli´erain Alexander Grothendieck (Univ. Montpellier), Cote n. 140-2 (1978–1982). URL: https://grothendieck.umontpellier.fr
14. [Del98] P. Deligne, Quelques id´ees maˆıtresses de l’oeuvre de A. Grothendieck, in: Mat´eriaux pour l’histoire des math´ematiques au XXe si`ecle (Nice, 1996), S´emin. Congr. 3, 11–19 (Soc. Math. France, Parism 1998). URL: https://mathscinet.ams.org/mathscinet-getitem?mr=MR1640253
15. [GenEll] S. Mochizuki, Arithmetic elliptic curves in general position, Math. J. Okayama Univ. 52, 1–28 (2010). DOI: https://doi.org/10.18926/mjou/33503
16. [Lan95] S. Lang, Mordell’s review, Siegel’s letter to Mordell, Diophantine geometry, and 20th century mathematics, Notices Amer. Math. Soc. 42 (3), 339–350 (1995). URL: https://mathscinet.ams.org/mathscinet-getitem?mr=MR1316133
17. [R´em03] G. R´emond, Vojta’s method in diophantine geometry, applications and related topics in: Proc. of the Diophantine Problems and Analytic Number Theory Conference, Kˆokyˆuroku, 202– 210 (RIMS, 2003). URL: http://hdl.handle.net/2433/43068
18. [BG06] E. Bombieri, W. Gubler, Heights in Diophantine geometry, New Math. Monographs 4 (Cambridge Univ. Press, Cambridge, 2006). DOI: https://doi.org/10.1017/CBO9780511542879
19. [NTM98] H. Nakamura, A. Tamagawa, S. Mochizuki, Grothendieck’s conjectures concerning fundamental groups of algebraic curves, S¯ugaku 50 (2), 113–129 (1998); Eng. “Sugaku Expositions” 14 (1), AMS (2001). URL: https://mathscinet.ams.org/mathscinet-getitem?mr=MR1648427
20. [Hos22] Y. Hoshi, Progress in anabelian geometry (in Japanese), S¯ugaku 74 (1), 1–30 (2022); To be translated in “Sugaku Expositions” AMS.
21. [EtTh] S. Mochizuki, The ´etale theta function and its Frobenioid-theoretic manifestations, Publ. Res. Inst. Math. Sci. 45 (1), 227–349 (2009). DOI: https://doi.org/10.2977/prims/1234361159
22. [Hos20] Y. Hoshi, A note on an anabelian open basis for a smooth variety, Tohoku Math. J. (2) 72 (4), 537–550 (2020). DOI: https://doi.org/10.2748/tmj.20190917a
23. [Hos21] Y. Hoshi, Introduction to Mono-anabelian Geometry, Publ. Math. Besan¸con Alg`ebre Th´eorie Nr., 5–44 (2021). DOI: https://doi.org/10.5802/pmb.42
24. [SS16] A. Schmidt, J. Stix, Anabelian geometry with ´etale homotopy types, Ann. Math. (2) 184 (3), 817–868 (2016). DOI: https://doi.org/10.4007/annals.2016.184.3.5
25. [HMM22] Y. Hoshi, A. Minamide, S. Mochizuki, Group-theoreticity of numerical invariants and distinguished subgroups of configuration space groups, Kodai Math. J. 45 (3), 295–348 (2022). [HTM20] Y. Hoshi, S. Tsujimura, S. Mochizuki, Combinatorial construction of the absolute Galois group of the field of rational numbers, 97 p. (2020). URL: http://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1935.pdf
26. [Lep10] E. Lepage, Tempered fundamental group and metric graph of a Mumford curve, Publ. Res. Inst. Math. Sci. 46 (4), 849–897 (2010). URL: https://mathscinet.ams.org/mathscinet-getitem?mr=MR2791009
27. [IUTChI-IV] S. Mochizuki, Inter-universal Teichm¨uller theory: (I) Construction of Hodge theaters, (II) Hodge-Arakelov-theoretic evaluation, (III) Canonical splittings of the log-theta-lattice, (IV) Log-volume computations and set-theoretic foundations, Publ. Res. Inst. Math. Sci. 57 (1), 3–723 (2021). DOI: https://doi.org/10.4171/prims/57-1-1
28. [Prom20] B. Collas, P. D`ebes, B. Fresse, RIMS-Lille seminar. Promenade in Inter-universal Teichmuller theory (2020). URL: https://www.kurims.kyoto-u.ac.jp/~bcollas/Promenade-IUT/index.html
29. [ExpHoriz2] S. Mochizuki, Y. Hoshi, I. Fesenko, Y. Taguchi, B. Collas. Workhop. Inter-universal Teichm¨uller Theory Summit 2021 (2021). URL: https://www.kurims.kyoto-u.ac.jp/~motizuki/RIMS-workshop-homepages-2016-2021/w4/iut2.html
30. [ExpHoriz1] S. Mochizuki, Y. Hoshi, I. Fesenko, Y. Taguchi, B. Collas. Workhop. Invitation to Inter-universal Teichm¨uller Theory (2021). URL: https://www.kurims.kyoto-u.ac.jp/~motizuki/RIMS-workshop-homepages-2016-2021/w3/iut1.html
31. [ExpEst] S. Mochizuki, I. Fesenko, Y. Hoshi, A. Minamide, W. Porowski, Explicit estimates in inter-universal Teichm¨uller theory, Kodai Math. J. 45 (2), 175–236 (2022). DOI: https://doi.org/10.2996/kmj45201
32. [Fes16] I. Fesenko, “Fukugen” – On Shinichi Mochizuki’s Inter-universal Teichm¨uller Theory, Inference 2 (3), 2016. DOI: https://doi.org/10.37282/991819.16.25
33. [McL10] C. McLarty, What does it take to prove Fermat’s last theorem? Grothendieck and the logic of number theory, Bull. Symbolic Logic 16 (3), 359–377 (2010). URL: https://doi.org/10.2178/bsl/1286284558
34. [Ble22] I. Blechschmidt, Exploring mathematical objects from custom-tailored mathematical universes, in: Objects, structures, and logics — FilMat studies in the philosophy of mathematics, Boston Stud. Philos. Hist. Sci. 339, 63–95 (Springer, Cham, 2022). DOI: https://doi.org/10.1007/978-3-030-84706-7_4
35. [GT02] A. Granville, T. J. Tucker, It’s as easy as abc, Notices Amer. Math. Soc. 49 (10), 1224–1231 (2002). URL: https://mathscinet.ams.org/mathscinet-getitem?mr=MR1930670
36. [Alien] S. Mochizuki, The mathematics of mutually alien copies: from Gaussian integrals to interuniversal Teichm¨uller theory, in: Inter-universal Teichm¨uller Theory Summit 2016, RIMS Kˆokyˆuroku Bessatsu, B84, 23–192 (Res. Inst. Math. Sci. (RIMS), Kyoto, 2021). URL: http://www.kurims.kyoto-u.ac.jp/~motizuki/Alien%20Copies,%20Gaussians,%20and%20Inter-universal%20Teichmuller%20Theory.pdf
37. [Hos21b] Y. Hoshi, On the Galois orbit version of Inter-universal Teichm¨uller theory I & II: a progress report, Inter-universal Teichm¨uller Theory Summit (2021). URL: https://www.kurims.kyoto-u.ac.jp/~motizuki/RIMS-workshop-homepages-2016-2021/w4/iut2.html
38. [Moc10] S. Mochizuki, Inter-universal Teichm¨uller Theory: A Progress Report, “Development of Galois–Teichm¨uller Theory and Anabelian Geometry” Joint MSJ-RIMS Conf. (2010). URL: https://www.mathsoc.jp/meeting/msjsi10/JointMSJ-RIMSprogram20101027.pdf
39. [Moc04] S. Mochizuki, Categorical Representation of Arithmetic Log Schemes, with Applications to the Arithmetic of Elliptic Curves, “Arithmetic Geometry” Tokyo Conference (2004). URL: https://www.ms.u-tokyo.ac.jp/video/conference/2004arithmeticgeometry/
40. [Hos14] Y. Hoshi, Conditional results on the birational section conjecture over small number fields, in: Automorphic forms and Galois representations. V. 2, London Math. Soc. Lecture Note Ser. 415, 187–230 (Cambridge Univ. Press, Cambridge, 2014). URL: https://mathscinet.ams.org/mathscinet-getitem?mr=MR3444234
41. [Sa¨ı12] M. Sa¨ıdi, Around the Grothendieck anabelian section conjecture, in: Non-abelian fundamental groups and Iwasawa theory, London Math. Soc. Lecture Note Ser. 393, 72–106 (Cambridge Univ. Press, Cambridge, 2012). URL: https://mathscinet.ams.org/mathscinet-getitem?mr=MR2905530
42. [Fal98] G. Faltings, Curves and their fundamental groups (following Grothendieck, Tamagawa and Mochizuki), in: S´eminaire Bourbaki. V. 1997/98, Ast´erisque No. 252 (1998), Exp. No. 840 (4), 131–150. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=MR1685577
Рецензия
Для цитирования:
Collas B. Anabelian Arithmetic Geometry – A new Geometry of Forms and Numbers: Inter-universal Teichm¨uller theory or “beyond Grothendieck’s vision”. Математика и теоретические компьютерные науки. 2023;1(1):3-23.
For citation:
Collas B. Anabelian Arithmetic Geometry – A new Geometry of Forms and Numbers: Inter-universal Teichm¨uller theory or “beyond Grothendieck’s vision”. Mathematics and Theoretical Computer Science. 2023;1(1):3-23.