Preview

Mathematics and Theoretical Computer Science

Advanced search

Involutions of Ks(R)

https://doi.org/10.26907/2949-3919.2023.4.81-104

Abstract

We give a description of involutions in formal matrix ring Ks(R) over an UFD. Some results on equivalency of involutions were also obtained.

About the Authors

I. A. Kulguskin
Kazan Federal University
Russian Federation

Ivan Aleksandrovich Kulguskin 

18 Kremlyovskaya str., Kazan 420008, Russia



D. T. Tapkin
Kazan Federal University
Russian Federation

Danil Tagirzyanovich Tapkin 

18 Kremlyovskaya str., Kazan 420008, Russia



References

1. P.A. Krylov, Isomorphism of generalized matrix rings, Algebra and Logic 47 (4), 258–262 (2008). DOI: https://doi.org/10.1007/s10469-008-9016-y

2. G. Tang, Ch. Li, Y. Zhou, Study of Morita contexts, Commun. Algebra 42 (4), 1668–1681 (2014). DOI: https://doi.org/10.1080/00927872.2012.748327

3. G. Tang, Y. Zhou, A class of formal matrix rings, Linear Algebra Appl. 438 (12), 4672–4688 (2013). DOI: https://doi.org/10.1016/j.laa.2013.02.019

4. P.A. Krylov, A.A. Tuganbaev, Formal matrices and their determinants, J. Math. Sci. 211 (3), 341–380 (2015). DOI: https://doi.org/10.1007/s10958-015-2610-3

5. P.A. Krylov, A.A. Tuganbaev, Automorphisms of matrix rings, Itogi Nauki i Tekhniki. Ser. Sovrem. Matem. Pril. Temat. Obz. 219, 16–38 (2023) [in Russian]. DOI: https://doi.org/10.36535/0233-6723-2022-219-16-38

6. P.A. Krylov, A.A. Tuganbaev, Formal matrices, Springer Cham, 2017. DOI: https://doi.org/10.1007/978-3-319-53907-2

7. A.A. Albert, Structure of algebras, Amer. Math. Soc. Colloquium Publ. 24, AMS, Providence, R.I., 1961.

8. M.A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The Book of Involutions, Amer. Math. Soc. Colloquium Publ. 44, AMS, Providence R.I., 1998.

9. N. Jacobson, Finite-dimensional division algebras over fields, Springer-Verlag, Berlin, 1996. DOI: https://doi.org/10.1007/978-3-642-02429-0

10. A.N. Abyzov, D.T. Tapkin, Formal matrix rings and their isomorphisms, Siberian Math. J. 56 (6), 955–967 (2015). DOI: https://doi.org/10.1134/S0037446615060014

11. R.S. Pierce, Associative algebras, Springer, N.Y., 1982. DOI: https://doi.org/10.1007/978-1-4757-0163-0

12. I.M. Isaacs, Automorphsm of matrix algebras over commutative rings, Linear Algebra Appl., 215–231 (1980). DOI: https://doi.org/10.1016/0024-3795(80)90221-9


Review

For citations:


Kulguskin I.A., Tapkin D.T. Involutions of Ks(R). Mathematics and Theoretical Computer Science. 2023;1(4):81-104. (In Russ.) https://doi.org/10.26907/2949-3919.2023.4.81-104

Views: 224


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3919 (Online)