Involutions of Ks(R)
https://doi.org/10.26907/2949-3919.2023.4.81-104
Abstract
We give a description of involutions in formal matrix ring Ks(R) over an UFD. Some results on equivalency of involutions were also obtained.
About the Authors
I. A. KulguskinRussian Federation
Ivan Aleksandrovich Kulguskin
18 Kremlyovskaya str., Kazan 420008, Russia
D. T. Tapkin
Russian Federation
Danil Tagirzyanovich Tapkin
18 Kremlyovskaya str., Kazan 420008, Russia
References
1. P.A. Krylov, Isomorphism of generalized matrix rings, Algebra and Logic 47 (4), 258–262 (2008). DOI: https://doi.org/10.1007/s10469-008-9016-y
2. G. Tang, Ch. Li, Y. Zhou, Study of Morita contexts, Commun. Algebra 42 (4), 1668–1681 (2014). DOI: https://doi.org/10.1080/00927872.2012.748327
3. G. Tang, Y. Zhou, A class of formal matrix rings, Linear Algebra Appl. 438 (12), 4672–4688 (2013). DOI: https://doi.org/10.1016/j.laa.2013.02.019
4. P.A. Krylov, A.A. Tuganbaev, Formal matrices and their determinants, J. Math. Sci. 211 (3), 341–380 (2015). DOI: https://doi.org/10.1007/s10958-015-2610-3
5. P.A. Krylov, A.A. Tuganbaev, Automorphisms of matrix rings, Itogi Nauki i Tekhniki. Ser. Sovrem. Matem. Pril. Temat. Obz. 219, 16–38 (2023) [in Russian]. DOI: https://doi.org/10.36535/0233-6723-2022-219-16-38
6. P.A. Krylov, A.A. Tuganbaev, Formal matrices, Springer Cham, 2017. DOI: https://doi.org/10.1007/978-3-319-53907-2
7. A.A. Albert, Structure of algebras, Amer. Math. Soc. Colloquium Publ. 24, AMS, Providence, R.I., 1961.
8. M.A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The Book of Involutions, Amer. Math. Soc. Colloquium Publ. 44, AMS, Providence R.I., 1998.
9. N. Jacobson, Finite-dimensional division algebras over fields, Springer-Verlag, Berlin, 1996. DOI: https://doi.org/10.1007/978-3-642-02429-0
10. A.N. Abyzov, D.T. Tapkin, Formal matrix rings and their isomorphisms, Siberian Math. J. 56 (6), 955–967 (2015). DOI: https://doi.org/10.1134/S0037446615060014
11. R.S. Pierce, Associative algebras, Springer, N.Y., 1982. DOI: https://doi.org/10.1007/978-1-4757-0163-0
12. I.M. Isaacs, Automorphsm of matrix algebras over commutative rings, Linear Algebra Appl., 215–231 (1980). DOI: https://doi.org/10.1016/0024-3795(80)90221-9
Review
For citations:
Kulguskin I.A., Tapkin D.T. Involutions of Ks(R). Mathematics and Theoretical Computer Science. 2023;1(4):81-104. (In Russ.) https://doi.org/10.26907/2949-3919.2023.4.81-104