Preview

Mathematics and Theoretical Computer Science

Advanced search

Small quasi-projective modules

https://doi.org/10.26907/2949-3919.2024.3.4-28

Abstract

We study small quasi-projective modules and closely related classes of modules. The concept of a small quasi-projective module is dual to the concept of an essentially quasi-injective module, which has recently been studied in several works. It is shown that over right perfect rings, the class of small quasi-projective right modules coincides with a number of classes of right modules close to projective modules, which are studied in the article. As a consequence of the obtained results, the well-known A.A. Tuganbaev’s theorem on the coincidence of the classes of quasi-projective right modules and endomorphism-lifting right modules over right perfect rings is presented. Also, characterizations are obtained for modules , for which in the category σ[every (finitely generated, cyclic, semisimple, simple) module is small projective in σ[].

About the Authors

А. N. Abyzov
Kazan Federal University
Russian Federation
Adel Nailevich Abyzov

18 Kremlyovskaya str., Kazan 420008



T. D. Bui
Kazan Federal University; Can Tho University of Technology
Russian Federation
Bui Tien Dat

18 Kremlyovskaya str., Kazan 420008

256 Nguyen Van Cu str., Can Tho, Vietnam



References

1. R.E. Johnson, E.T. Wong, Quasi-injective modules and irreducible rings, J. London Math. Soc. 36, 260–268 (1961). DOI: https://doi.org/10.1112/jlms/s1-36.1.260

2. A.A. Tuganbaev, Semidistributive modules and rings, Mathematics and its Applications 449, Kluwer Academic Publishers, Dordrecht, 1998. DOI: https://doi.org/10.1007/978-94-011-5086-6

3. A.A. Tuganbaev, Characterizations of rings using skew-injective and skew-projective modules, Moscow Univ. Math. Bull. (3), 48–51 (1979) [in Russian].

4. S.E. Dickson, K.R. Fuller, Algebras for which every indecomposable right module is invariant in its injective envelope, Pac. J. Math. 31 (3), 655–658 (1969). DOI: https://doi.org/10.2140/pjm.1969.31.655

5. S. Singh, A.K. Srivastava, Dual automorphism-invariant modules, J. Algebra 371, 262–275 (2012). DOI: https://doi.org/10.1016/j.jalgebra.2012.08.012

6. A.N. Abyzov, T.C. Quynh, Lifting of automorphisms of factor modules, Comm. Algebra 46 (11), 5073–5082 (2018). DOI: https://doi.org/10.1080/00927872.2018.1461884

7. A.N. Abyzov, T.C. Quynh, N.T.T. Ha, T. Yildirim, Modules close to the automorphism invariant and coinvariant, J. Algebra Appl. 18 (12), art. 1950235 (2019). DOI: https://doi.org/10.1142/S0219498819502359

8. A.N. Abyzov, T.D. Bui, Essentially quasi-injective modules and their direct sums, Russian Mathematics (Iz. VUZ) (7), 9–23 (2024) [in Russian]. DOI: https://doi.org/10.26907/0021-3446-2024-7-9-23

9. A.A. Tuganbaev, Ring theory. Arithmetic modules and rings, MCCME, Moscow, 2009 [in Russian].

10. R. Wisbauer, Foundations of module and ring theory. A handbook for study and research, Gordon and Breach Science Publishers, Philadelphia, PA, 1991. DOI: https://doi.org/10.1201/9780203755532

11. F. Kasch, Modules and rings, London Mathematical Society Monographs 17, Academic Press, Inc., London–New York, 1982.

12. J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting modules. Supplements and projectivity in module theory, Birkh¨auser Verlag, Basel, 2006. DOI: https://doi.org/10.1007/3-7643-7573-6

13. A.N. Abyzov, B.T. Dat, T.C. Quynh, Small dual-ADS modules, small ADS# and small ADS* modules, Lobachevskii J. Math. 44 (12), 5097–5115 (2023). DOI: https://doi.org/10.1134/S1995080223120028

14. P.A. Guil Asensio, D. Keskin Tu¨tu¨ncu¨, B. Kalebo˜gaz, A.K. Srivastava, Modules which are coinvariant under automorphisms of their projective covers, J. Algebra 466, 147–152 (2016). DOI: https://doi.org/10.1016/j.jalgebra.2016.08.004

15. A.A. Tuganbaev, Arithmetical rings and endomorphisms, De Gruyter, Berlin, 2019. DOI: https://doi.org/10.1515/9783110659825

16. A.N. Abyzov, T.C. Quynh, A.A. Tuganbaev, Modules that are invariant with respect to automorphisms and idempotent endomorphisms of their hulls and covers, J. Math. Sci. 256 (3), 235–277 (2021). DOI: https://doi.org/10.1007/s10958-021-05427-x]

17. A.A. Tuganbaev, Automorphism-liftable modules, J. Algebra Appl. 21 (6), art. 2250106 (2022). DOI: https://doi.org/10.1142/S0219498822501067


Review

For citations:


Abyzov А.N., Bui T.D. Small quasi-projective modules. Mathematics and Theoretical Computer Science. 2024;2(3):4-28. (In Russ.) https://doi.org/10.26907/2949-3919.2024.3.4-28

Views: 204


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3919 (Online)