Preview

Mathematics and Theoretical Computer Science

Advanced search

Semigroup C-algebras generated by a free product of abelian semigroups

https://doi.org/10.26907/2949-3919.2024.3.29-45

Abstract

The article deals with semigroup C-algebras generated by regular representations of free products of abelian semigroups. A criterion of the simplicity of this algebras is obtained, characters, grading and a number of other properties are described.

About the Authors

S. А. Grigoryan
Kazan State Power-Engineering University
Russian Federation
Suren Arshakovich Grigoryan

51 Krasnoselskaya str., Kazan 420066



T. A. Grigoryan
Kazan State Power-Engineering University
Russian Federation
Tamara Anatolievna Grigoryan

51 Krasnoselskaya str., Kazan 420066



References

1. L.A. Coburn, The C∗-algebra generated by an isometry, Bull. Amer. Math. Soc. 73 (5), 722–726 (1967). DOI: https://doi.org/10.1090/S0002-9904-1967-11845-7

2. R.G. Douglas, On the C∗-algebra of a one-parameter semigroup of isometries, Acta Math. 128 (3–4), 143–151 (1972). DOI: https://doi.org/10.1007/BF02392163

3. G.J. Murphy, Ordered groups and Toeplitz algebras, J. Operator Theory 18 (2), 303–326 (1987). URL: http://www.jstor.org/stable/24714789

4. A. Nica, C∗-algebras generated by isometries and Wiener-Hopf operators, J. Operator Theory 27 (1), 17–52 (1992). URL: http://www.jstor.org/stable/24715075

5. J. Cuntz, Simple C∗-algebra generated by isometries, Comm. Math. Phys. 57 (2), 173–185 (1977). DOI: https://doi.org/10.1007/BF01625776

6. J. Cuntz, K-theory for certain C∗-algebras, Ann. Math. 113 (1), 181–197 (1981). DOI: https://doi.org/10.2307/1971137

7. G.J. Murphy, Crossed products of C∗-algebras by endomorphisms, Integral Equations and Operator Theory 24 (3), 298–319 (1996). DOI: https://doi.org/10.1007/BF01204603

8. E.V. Lipacheva, On the representation of semigroup C∗-algebra as a crossed product, Russian Math. (Iz. VUZ) 66 (8), 71–75 (2022). DOI: https://doi.org/10.3103/S1066369X22080059

9. A.H. Clifford, G.B. Preston, The algebraic theory of semigroups. V. I. Math. Surveys Monogr. 7, AMS, Providence, 1961.

10. S.A. Grigoryan, R.N. Gumerov, E.V. Lipacheva, Limits of inductive sequences of Toeplitz–Cuntz algebras, Proc. Steklov Inst. Math. 313, 60–69 (2021). DOI: https://doi.org/10.1134/S0081543821020073

11. R.N. Gumerov, E.V. Lipacheva, Automorphisms of the limits for the direct sequences of the Toeplitz–Cuntz algebras, J. Math. Anal. Appl. 533 (2), art. 127991 (2024). DOI: https://doi.org/10.1016/j.jmaa.2023.127991

12. S.A. Grigoryan, A.Sh. Sharafutdinov, Grading of a semigroup C∗-algebra by a local group, Russian Math. (Iz. VUZ) 67 (7), 72–76 (2023). DOI: https://doi.org/10.3103/S1066369X23070022

13. M. Laca, I. Raeburn, Semigroup crossed products and the Toeplitz algebras of nonabelian groups, J. Funct. Anal. 139 (2), 415–440 (1996). DOI: https://doi.org/10.1006/jfan.1996.0091

14. G.J. Murphy, C∗-algebras and operator theory, Academic Press, Boston, 1990.


Review

For citations:


Grigoryan S.А., Grigoryan T.A. Semigroup C-algebras generated by a free product of abelian semigroups. Mathematics and Theoretical Computer Science. 2024;2(3):29-45. (In Russ.) https://doi.org/10.26907/2949-3919.2024.3.29-45

Views: 114


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3919 (Online)