Semigroup C∗-algebras generated by a free product of abelian semigroups
https://doi.org/10.26907/2949-3919.2024.3.29-45
Abstract
The article deals with semigroup C∗-algebras generated by regular representations of free products of abelian semigroups. A criterion of the simplicity of this algebras is obtained, characters, grading and a number of other properties are described.
About the Authors
S. А. GrigoryanRussian Federation
Suren Arshakovich Grigoryan
51 Krasnoselskaya str., Kazan 420066
T. A. Grigoryan
Russian Federation
Tamara Anatolievna Grigoryan
51 Krasnoselskaya str., Kazan 420066
References
1. L.A. Coburn, The C∗-algebra generated by an isometry, Bull. Amer. Math. Soc. 73 (5), 722–726 (1967). DOI: https://doi.org/10.1090/S0002-9904-1967-11845-7
2. R.G. Douglas, On the C∗-algebra of a one-parameter semigroup of isometries, Acta Math. 128 (3–4), 143–151 (1972). DOI: https://doi.org/10.1007/BF02392163
3. G.J. Murphy, Ordered groups and Toeplitz algebras, J. Operator Theory 18 (2), 303–326 (1987). URL: http://www.jstor.org/stable/24714789
4. A. Nica, C∗-algebras generated by isometries and Wiener-Hopf operators, J. Operator Theory 27 (1), 17–52 (1992). URL: http://www.jstor.org/stable/24715075
5. J. Cuntz, Simple C∗-algebra generated by isometries, Comm. Math. Phys. 57 (2), 173–185 (1977). DOI: https://doi.org/10.1007/BF01625776
6. J. Cuntz, K-theory for certain C∗-algebras, Ann. Math. 113 (1), 181–197 (1981). DOI: https://doi.org/10.2307/1971137
7. G.J. Murphy, Crossed products of C∗-algebras by endomorphisms, Integral Equations and Operator Theory 24 (3), 298–319 (1996). DOI: https://doi.org/10.1007/BF01204603
8. E.V. Lipacheva, On the representation of semigroup C∗-algebra as a crossed product, Russian Math. (Iz. VUZ) 66 (8), 71–75 (2022). DOI: https://doi.org/10.3103/S1066369X22080059
9. A.H. Clifford, G.B. Preston, The algebraic theory of semigroups. V. I. Math. Surveys Monogr. 7, AMS, Providence, 1961.
10. S.A. Grigoryan, R.N. Gumerov, E.V. Lipacheva, Limits of inductive sequences of Toeplitz–Cuntz algebras, Proc. Steklov Inst. Math. 313, 60–69 (2021). DOI: https://doi.org/10.1134/S0081543821020073
11. R.N. Gumerov, E.V. Lipacheva, Automorphisms of the limits for the direct sequences of the Toeplitz–Cuntz algebras, J. Math. Anal. Appl. 533 (2), art. 127991 (2024). DOI: https://doi.org/10.1016/j.jmaa.2023.127991
12. S.A. Grigoryan, A.Sh. Sharafutdinov, Grading of a semigroup C∗-algebra by a local group, Russian Math. (Iz. VUZ) 67 (7), 72–76 (2023). DOI: https://doi.org/10.3103/S1066369X23070022
13. M. Laca, I. Raeburn, Semigroup crossed products and the Toeplitz algebras of nonabelian groups, J. Funct. Anal. 139 (2), 415–440 (1996). DOI: https://doi.org/10.1006/jfan.1996.0091
14. G.J. Murphy, C∗-algebras and operator theory, Academic Press, Boston, 1990.
Review
For citations:
Grigoryan S.А., Grigoryan T.A. Semigroup C∗-algebras generated by a free product of abelian semigroups. Mathematics and Theoretical Computer Science. 2024;2(3):29-45. (In Russ.) https://doi.org/10.26907/2949-3919.2024.3.29-45