Preview

Mathematics and Theoretical Computer Science

Advanced search

The quasivariety SP(M3)>: An equational basis

https://doi.org/10.26907/2949-3919.2024.3.53-62

Abstract

We prove that the quasivariety of (01)-lattices generated by the diamant M3 is a variety and find an equational basis of this variety.

About the Authors

A. E. Izyurova
Novosibirsk State University
Russian Federation
Aleksandra Evgenyevna Izyurova

1 Pirogov str., Novosibirsk 630090



М. V. Schwidefsky
Novosibirsk State University; Sobolev Institute of Mathematics SB RAS
Russian Federation
Marina Vladimirovna Schwidefsky

1 Pirogov str., Novosibirsk 630090 

4 Acad. Koptyug Ave., Novosibirsk 630090



References

1. M. Schu¨tzenberger, Sur certains axiomes de la th´eorie des structures, C. R. Acad. Sci. Paris 221, 218–220 (1945).

2. S.D. Comer, D.X. Hong, Some remarks concerning the varieties generated by the diamond and the pentagon, Trans. Amer. Math. Soc. 174, 45–54 (1972).

3. W. Dziobiak and M.V. Schwidefsky, Categorical dualities for some two categories of lattices: An extended abstract, Bull. Sec. Logic 51 (3), 329–344 (2022). DOI: https://doi.org/10.18778/0138-0680.2022.14

4. W. Dziobiak and M.V. Schwidefsky, Duality for bi-algebraic lattices belonging to the variety of (0, 1)-lattices generated by the pentagon, Algebra and Logic (to appear).

5. A.O. Basheyeva, M.V. Schwidefsky, K.D. Sultankulov, The quasivariety SP(L6). I. An equational basis, Siberian Electronic Mathematical Reports 19 (2), 902–911 (2022). DOI: https://doi.org/10.33048/semi.2022.19.076

6. A.O. Basheyeva, M.V. Schwidefsky, The quasivariety SP(L6). II. A duality result, Siberian Math. J. 65 (3), 514–521 (2024). DOI: https://doi.org/10.1134/S0037446624030029

7. O.A. Kadyrova, M.V. Schwidefsky, Quasivarieties generated by small suborder lattices. I. Equational bases, Sib. Electron. Math. Rep. 20 (1), 62–71 (2023). DOI: https://doi.org/10.33048/semi.2023.20.006

8. O.A. Kadyrova, M.V. Schwidefsky, Quasivarieties generated by small suborder lattices. II. A duality theorem (preprint). R. Freese, J. Jeˇzek, and J.B. Nation, Free lattices, Math. Surveys Monogr. 42, AMS, Providence, New York, 1995.


Review

For citations:


Izyurova A.E., Schwidefsky М.V. The quasivariety SP(M3)>: An equational basis. Mathematics and Theoretical Computer Science. 2024;2(3):53-62. (In Russ.) https://doi.org/10.26907/2949-3919.2024.3.53-62

Views: 88


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3919 (Online)