Downwards density in the n-computably enumerable Turing degrees and the uniform constructions
https://doi.org/10.26907/2949-3919.2024.3.76-91
Abstract
In 1993, R. Downey and M. Stob showed that the downwards density of computably enumerable (c.e.) Turing degrees in the partial 2-c.e. Turing degrees cannot be obtained from a uniform construction. We generalize this result for any n > 2 and show that there is no a uniform construction for the downwards density of (n − 1)-c.e. degrees in the structure of n-c.e. degrees. Moreover, we show that there is no a uniform construction for the downwards density in the n-c.e. degrees.
About the Author
M. M. YamaleevRussian Federation
Mars Mansurovich Yamaleev
18 Kremlyovskaya str., Kazan 420008
References
1. A.I. Talipova, M.M. Yamaleev, Nonuniformity of downwards density in the n-computably enumerable Turing degrees, Russian Math. (Iz. VUZ) 66 (11), 110–115 (2022). DOI: https://doi.org/10.3103/S1066369X22110081
2. R.I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspectives in mathematical logic. Springer-Verlag, Berlin, Heidelberg, New York, etc., 1987. URL: https://link.springer.com/book/9783540666813
3. R. Downey, M. Stob, Splitting theorems in recursion theory, Ann. Pure Appl. Log. 65 (1), 1–106 (1993). DOI: https://doi.org/10.1016/0168-0072(93)90234-5
4. S.B. Cooper, A.S. Li, Non-uniformity and generalised Sacks splitting, Acta Math. Sinica 18 (2), 327–334 (2002). DOI: https://doi.org/10.1007/s101140100150
5. M.M. Arslanov, I.Sh. Kalimullin, S. Lempp, On Downey’s conjecture, J. Symb. Log. 75 (2), 401–441 (2010). DOI: https://doi.org/10.2178/jsl/1268917488
Review
For citations:
Yamaleev M.M. Downwards density in the n-computably enumerable Turing degrees and the uniform constructions. Mathematics and Theoretical Computer Science. 2024;2(3):76-91. (In Russ.) https://doi.org/10.26907/2949-3919.2024.3.76-91