Preview

Mathematics and Theoretical Computer Science

Advanced search

Downwards density in the n-computably enumerable Turing degrees and the uniform constructions

https://doi.org/10.26907/2949-3919.2024.3.76-91

Abstract

In 1993, R. Downey and M. Stob showed that the downwards density of computably enumerable (c.e.) Turing degrees in the partial 2-c.e. Turing degrees cannot be obtained from a uniform construction. We generalize this result for any n > and show that there is no a uniform construction for the downwards density of (− 1)-c.e. degrees in the structure of n-c.e. degrees. Moreover, we show that there is no a uniform construction for the downwards density in the n-c.e. degrees.

About the Author

M. M. Yamaleev
Kazan Federal University, N.I. Lobachevsky Institute of Mathematics and Mechanics, Volga Region Mathematical Center
Russian Federation
Mars Mansurovich Yamaleev

18 Kremlyovskaya str., Kazan 420008



References

1. A.I. Talipova, M.M. Yamaleev, Nonuniformity of downwards density in the n-computably enumerable Turing degrees, Russian Math. (Iz. VUZ) 66 (11), 110–115 (2022). DOI: https://doi.org/10.3103/S1066369X22110081

2. R.I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspectives in mathematical logic. Springer-Verlag, Berlin, Heidelberg, New York, etc., 1987. URL: https://link.springer.com/book/9783540666813

3. R. Downey, M. Stob, Splitting theorems in recursion theory, Ann. Pure Appl. Log. 65 (1), 1–106 (1993). DOI: https://doi.org/10.1016/0168-0072(93)90234-5

4. S.B. Cooper, A.S. Li, Non-uniformity and generalised Sacks splitting, Acta Math. Sinica 18 (2), 327–334 (2002). DOI: https://doi.org/10.1007/s101140100150

5. M.M. Arslanov, I.Sh. Kalimullin, S. Lempp, On Downey’s conjecture, J. Symb. Log. 75 (2), 401–441 (2010). DOI: https://doi.org/10.2178/jsl/1268917488


Review

For citations:


Yamaleev M.M. Downwards density in the n-computably enumerable Turing degrees and the uniform constructions. Mathematics and Theoretical Computer Science. 2024;2(3):76-91. (In Russ.) https://doi.org/10.26907/2949-3919.2024.3.76-91

Views: 80


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3919 (Online)