The Quadratic Reciprocity Law by Zolotarev and its generalizations
https://doi.org/10.26907/2949-3919.2025.1.4-11
Abstract
In the paper of Duke and Hopkins (2005), following the approach of E.I. Zolotarev, an analogue of the quadratic reciprocity law for groups was obtained using the Kronecker symbol. We present a short proof of this statement using the Jacobi symbol. The work is mainly of a methodological nature. In this regard, we also provide a proof of the result established in the paper by Frobenius (1914), related to the combinatorial interpretation of the Jacobi symbol.
About the Author
A. N. AbyzovRussian Federation
Adel Nailevich Abyzov
18 Kremlyovskaya str., Kazan 420008
References
1. W. Duke, K. Hopkins, Quadratic reciprocity in a finite group, Amer. Math. Monthly 112 (3), 251–256 (2005). DOI: https://doi.org/10.1080/00029890.2005.11920190
2. G. Frobenius, ¨Uber das quadratische Reciprocit¨atsgesetz, in: Sitzungsberichte der K¨oniglich Preußischen Akademie der Wissenschaften zu Berlin, 335–349 (1914).
3. M. Lerch, Sur un th´eor`eme arithm´etique de Zolotarev, Bulletin int. de l’Ac. Prague 3, 34–37 (1896).
4. G. Zolotareff, Nouvelle d´emonstration de la loi de r´eciprocit´e de Legendre, Nouv. Ann. Math. (2e s´erie) 11, 354–362 (1872).
5. G. Rousseau, On the Jacobi symbol, J. Number Theory 48 (1), 109–111 (1994). DOI: https://doi.org/10.1006/jnth.1994.1057
6. E.A. Gorin, Permutations and reciprocity law by Zolotarev–Frobenius–Russo, Chebyshevskii sb. 14 (4), 80–94 (2013) [in Russian]. URL: https://www.mathnet.ru/rus/cheb305
7. A. Brunyate, P.L. Clark, Extending the Zolotarev–Frobenius approach to quadratic reciprocity, The Ramanujan J. 37 (1), 25–50 (2015). DOI: https://doi.org/10.1007/s11139-014-9635-y
Review
For citations:
Abyzov A.N. The Quadratic Reciprocity Law by Zolotarev and its generalizations. Mathematics and Theoretical Computer Science. 2025;3(1):4-11. (In Russ.) https://doi.org/10.26907/2949-3919.2025.1.4-11