M.V. Dolov and the sixteenth Hilbert problem
https://doi.org/10.26907/2949-3919.2025.3.10-19
Abstract
The 5th of November 2024 marked the 90th anniversary of the birth of an outstanding scientist and a remarkable person Mikhail Vasilievich Dolov. This short essay is dedicated to this event and contains an overview of some results of M.V. Dolov and other researchers at Nizhny Novgorod State University on the second part of the sixteenth Hilbert problem.
About the Authors
A. D. MorozovRussian Federation
Albert Dmitrievich Morozov
23 Gagarin ave., Nizhny Novgorod 603022
K. E. Morozov
Russian Federation
Kirill Evgenevich Morozov
23 Gagarin ave., Nizhny Novgorod 603022
References
1. G.M. Polotovsky, V.V. Morozov, D.A. Gudkov and the first part of the 16th Hilbert problem, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki 154 (2), 31–43 (2012) [in Russian]. URL: https://www.mathnet.ru/rus/uzku1116
2. H. Dulac, Sur les cycles limits, Bull. Soc. Math. France 51, 45–188 (1923) [in French]. DOI: https://doi.org/10.24033/bsmf.1031
3. Yu.S. Ilyashenko, Dulac’s memoir “On limit cycles” and related problems of the local theory of differential equations, Russian Math. Surveys 40 (6), 1–49 (1985). DOI: https://doi.org/10.1070/RM1985v040n06ABEH003701
4. Yu.S. Ilyashenko, Finiteness theorems for limit cycles, Russian Math. Surveys 45 (2), 129–203 (1990). DOI: https://doi.org/10.1070/RM1990v045n02ABEH002335
5. J. Ecalle, ´ Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Hermann, Paris, 1992 [in French].
6. N.N. Bautin, Estimation of the number of algebraic limit cycles of the system x˙ = P(x, y), y˙ = Q(x, y) with algebraic right-hand sides, Differ. Uravn. 16 (2), 362 (1980) [in Russian]. URL: https://www.mathnet.ru/rus/de3931
7. N.F. Otrokov, On the number of limit circles in the neighborhood of a focus, Dokl. Akad. Nauk USSR 43 (4), 102–105 (1944) [in Russian].
8. N.F. Otrokov, On the number of limit cycles of a differential equation in the neighborhood of a singular point, Sb. Math. 76 (1), 127–144 (1954) [in Russian]. URL: https://www.mathnet.ru/sm5240
9. M.V. Dolov, On the problem of the finiteness of limit cycles of polynomial vector field and N.F. Otrokov works, Vestnik NNGU, ser. Math. (1), 146–154 (2003) [in Russian]. URL: http://www.vestnik.unn.ru/ru/nomera?anum=1416
10. M.V. Dolov, On some methods of limit cycles research, diss. ... cand. phys.-math, Gorkii, 1967.
11. M.V. Dolov, On canonical integrals and limit circles, diss. ... dr. phys.-math, Gorkii, 1983.
12. M.V. Dolov, Limit cycles and algebraic integrals in the case of a center, Differ. Uravn. 11 (11), 1935–1941 (1975) [in Russian]. URL: https://www.mathnet.ru/rus/de2593
13. M.V. Dolov, The canonical integral in the neighborhood of a focus, Differ. Uravn. 12 (11), 1946–1953 (1976) [in Russian]. URL: https://www.mathnet.ru/rus/de2905
14. M.V. Dolov, Limit cycles and Darboux integrals in the case of a node, Differ. Uravn. 13 (3), 406–415 (1977) [in Russian]. URL: https://www.mathnet.ru/rus/de3009
15. M.V. Dolov, Darboux integrals in the case of a focus, Differ. Uravn. 14 (7), 1173–1178 (1978). URL: https://www.mathnet.ru/rus/de3431
16. M.V. Dolov, V.V. Kosarev, Darboux integrals and the analytic structure of solutions of differential equations, Differ. Uravn. 19 (4), 697–700 (1983). URL: https://www.mathnet.ru/rus/de4830
17. M.V. Dolov, An integrating factor in a neighborhood of a node, Differential Equations 33 (2), 158–160 (1997).
18. M.V. Dolov, S.A. Chistyakova, Algebraic differential equations with an integrating factor of Darboux type, Differential Equations 33 (5), 621–625 (1997).
19. T.A. Druzhkova, A certain differential equation with algebraic integrals, Differ. Uravn. 11 (2), 262–267 (1975) [in Russian]. URL: https://www.mathnet.ru/rus/de2383
20. M.V. Dolov, Algebraical limit cycles of polynomial vector fields on the plane, Differential Equations 37 (9), 1211–1216 (2001). DOI: https://doi.org/10.1023/A:1012582809822
21. M.V. Dolov, Bautin’s theorem on a number of algebraical limit cycles of polynomial vector fields, Vestnik NNGU (4), 259–262 (2014) [in Russian]. URL: http://www.vestnik.unn.ru/ru/nomera?anum=8807
22. M.V. Dolov, On the number of algebraic invariant curves of polynomial vector fields, Differential Equations 40 (6), 896–897 (2004). DOI: https://doi.org/10.1023/B:DIEQ.0000046867.17535.71
23. M.V. Dolov, Limit cycles in the case of the center, Differ. Uravn. 8 (9), 1691–1692 (1972) [in Russian]. URL: https://www.mathnet.ru/rus/de1673
24. E.V. Kruglov, Algebraic differential equations with given integrals. Review of the results obtained by M.V. Dolov, Matem. v vysh. obr. 22, 91–106 (2024) [in Russian]. URL: https://elibrary.ru/item.asp?id=80428850
25. A.N. Varchenko, Estimate of the number of zeros of an abelian integral depending on a parameter and limit cycles, Funct. Anal. Appl. 18(2), 98–108 (1984). DOI: https://doi.org/10.1007/BF01077820
26. A.D. Morozov, Quasi-conservative systems. Cycles, resonances and chaos, World Scientific Publishing Co., Inc., River Edge, NJ, 1998. DOI: https://doi.org/10.1142/3238
27. A.D. Morozov, E.L. Fedorov, On the investigation of equations with one degree of freedom, close to nonlinear integrable ones, Differ. Uravn. 19 (9), 1511–1516 (1983) [in Russian]. URL: https://www.mathnet.ru/rus/de4943
28. G.S. Petrov, The Chebyshev property of elliptic integrals, Funct. Anal. Appl. 22 (1), 72–73 (1988). DOI: https://doi.org/10.1007/BF01077734
Review
For citations:
Morozov A.D., Morozov K.E. M.V. Dolov and the sixteenth Hilbert problem. Mathematics and Theoretical Computer Science. 2025;3(3):10-19. (In Russ.) https://doi.org/10.26907/2949-3919.2025.3.10-19








