Preview

Mathematics and Theoretical Computer Science

Advanced search

Arithmetic and combinatorics of recurrent sequences

Abstract

We study arithmetic properties of integer sequences counting amount of tilings of circular strips with two pieces consisting of equal cells. We also investigate recurrent sequences related to Pascal’s triangle

About the Author

R. V. Urazbahtin
Kazan Federal University
Russian Federation

18 Kremlyovskaya str., Kazan 420008



References

1. M. J. Coster, Supercongruences, PhD thesis, Universiteit Leiden, 1988.

2. T. M. Green, Recurrent sequences and Pascal’s triangle, Math. Magazine 41 (1), 13–21 (1968). DOI: https://doi.org/10.1080/0025570X.1968.11975825

3. G. Minton, Three approaches to a sequence problem, Math. Magazine 84 (1), 33–37 (2011). DOI: https://doi.org/10.4169/math.mag.84.1.033

4. A. K. Sushkevich, An introduction to higher algebra, Gostechizdat, M., 1941 [in Russian].

5. C. J. Smyth, A coloring proof of a generalization of Fermat’s little theorem, Amer. Math. Monthly 93 (6), 469–471 (1986). DOI: https://doi.org/10.1080/00029890.1986.11971858


Review

For citations:


Urazbahtin R.V. Arithmetic and combinatorics of recurrent sequences. Mathematics and Theoretical Computer Science. 2023;1(1):78-88. (In Russ.)

Views: 138


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3919 (Online)