Arithmetic and combinatorics of recurrent sequences
Abstract
We study arithmetic properties of integer sequences counting amount of tilings of circular strips with two pieces consisting of equal cells. We also investigate recurrent sequences related to Pascal’s triangle
About the Author
R. V. UrazbahtinRussian Federation
18 Kremlyovskaya str., Kazan 420008
References
1. M. J. Coster, Supercongruences, PhD thesis, Universiteit Leiden, 1988.
2. T. M. Green, Recurrent sequences and Pascal’s triangle, Math. Magazine 41 (1), 13–21 (1968). DOI: https://doi.org/10.1080/0025570X.1968.11975825
3. G. Minton, Three approaches to a sequence problem, Math. Magazine 84 (1), 33–37 (2011). DOI: https://doi.org/10.4169/math.mag.84.1.033
4. A. K. Sushkevich, An introduction to higher algebra, Gostechizdat, M., 1941 [in Russian].
5. C. J. Smyth, A coloring proof of a generalization of Fermat’s little theorem, Amer. Math. Monthly 93 (6), 469–471 (1986). DOI: https://doi.org/10.1080/00029890.1986.11971858
Review
For citations:
Urazbahtin R.V. Arithmetic and combinatorics of recurrent sequences. Mathematics and Theoretical Computer Science. 2023;1(1):78-88. (In Russ.)