Preview

Mathematics and Theoretical Computer Science

Advanced search

Invariants of equivalence classes of tight frames

Abstract

We observe the unitary equivalence up to reordering on the set of tight frames in a finite-dimensional space. We show that Parseval frames in Rn in general position are unitarily equivalent up to permutation if and only if certain permutational unitary invariants are equal. This is proved by giving an algorithm to recover a Parseval frame up to permutational unitary equivalence from a some subset of these invariants.

The main result is proved by using the action of the symmetric group on the space of symmetric matrices. More precisely, we show algebraically independent generators of the field of invariants for this action.

About the Author

V. V. Sevostyanova
Samara National Research University, Volga Region Mathematical Center
Russian Federation

Victoria Vladimirovna Sevostyanova

1 Akad. Pavlova str., Samara, 443011



References

1. S.F.D. Waldron, An Introduction to Finite Tight Frames, Birkh¨auser, Boston, 2018. DOI: https://doi.org/10.1007/978-0-8176-4815-2

2. M. Fickus, J. Jasper, E.J. King, D.G. Mixon, Equiangular tight frames that contain regular simplices, Linear Algebra Appl. 555, 98–138 (2018). DOI: https://doi.org/10.1016/j.laa.2018.06.004

3. S.Ya. Novikov, Equiangular Tight Frames with Simplices and with Full Spark in Rd, Lobachevskii J. Math. 42 (1), 155–166 (2021). DOI: https://doi.org/10.1134/S1995080221010200

4. O. Christensen, An Introduction to Frames and Riesz Bases, Birkh¨auser, Boston, 2002. DOI: https://doi.org/10.1007/978-3-319-25613-9

5. М.Н. Истомина, А.Б. Певный, О расположении точек на сфере и фрейме Мерседес-Бенц, Матем. просв., сер. 3 11, 105–112 (2007). URL: https://www.mathnet.ru/rus/mp221

6. A. Abdollahi, H. Najafi, Frame Graphs, Linear and Multilinear Algebra, 66 (6) (2018), 1229–1243. DOI: https://doi.org/10.1080/03081087.2017.1347135

7. H. Kraft, Geometric methods in invariant theory, Mir, M., 1987 [in Russian].

8. E.B. Vinberg, V.L. Popov, Invariant theory, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr. 55, VINITI, M., 137–309, 1989 [in Russian]. URL: https://www.mathnet.ru/rus/intf158


Review

For citations:


Sevostyanova V.V. Invariants of equivalence classes of tight frames. Mathematics and Theoretical Computer Science. 2023;1(3):46-58. (In Russ.)

Views: 126


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-3919 (Online)