On the asymptotic behavior of the trajectories of skew products with a closed set of periodic points
https://doi.org/10.26907/2949-3919.2025.3.58-86
Abstract
The article continues the research of the asymptotic behavior of the trajectories of the most simple skew products on multidimensional cells conducted by the authors. Here we describe the structure of nonwandering set of continuous skew products having a closed set of periodic points and such that the set of (least) periods of periodic points is unbounded. An example of a differentiable skew product with a closed set of periodic points is constructed, defined on an n-dimensional cell (n ≥ 3) and having a one-dimensional ω-limit set. Keywords: skew product, nonwandering set, Ω-blow up, ω-limit set
About the Authors
L. S. EfremovaRussian Federation
Lyudmila Sergeevna Efremova
23 Gagarin ave., Nizhny Novgorod 603022;
9 Institutskii alley, Dolgoprudny, Moscow Region, 141701
M. V. Shalagin
Russian Federation
Matvey Andreevich Shalagin
23 Gagarin ave., Nizhny Novgorod 603022
References
1. L.S. Efremova, On the nonwandering set and the center of triangular mappings with a closed set of periodic points in the base, in: Dynamical systems and nonlinear phenomena, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 15–25 (1990) [in Russian].
2. F. Balibrea, J.L. Guirao, J.I. Casado, A triangular map on I 2 , whose ω-limit sets are all compact interval of {0} × I, Discrete Contin. Dyn. Syst. 8 (4), 983–994 (2002). DOI: https://doi.org/10.3934/dcds.2002.8.983
3. J. Kupka, The triangular maps with closed sets of periodic points, J. Math. Anal. Appl. 319 (1), 302–314 (2006). DOI: https://doi.org/10.1016/j.jmaa.2005.06.028
4. L.S. Efremova, Differential properties and attracting sets of a simplest skew product of interval maps, Sb. Math. 201 (6), 873–907 (2010). DOI: https://doi.org/10.1070/SM2010v201n06ABEH004095
5. L.S. Efremova, On C 0 - Ω-blow-ups in C 1 -smooth skew products of interval mappings with a closed set of periodic points, Vestnik of Lobachevsky State University of Nizhny Novgorod (3), 130–136, (2012) [in Russian].
6. L.S. Efremova, Remarks on the nonwandering set of skew products with a closed set of periodic points of the quotient map, in: Nonlinear maps and their applications. Springer Proc. Math. Statist. 57, Springer, New York, 39–58 (2014). DOI: https://doi.org/10.1007/978-1-4614-9161-3_6
7. L.S. Efremova, Dynamics of skew products of interval maps, Russian Math. Surveys 72 (1), 101–178 (2017). DOI: https://doi.org/10.1070/RM9745
8. L.S. Efremova, Simplest skew products on n-dimensional (n ≥ 2) cells, cylinders and tori, Lobachevskii J. Math. 43 (7), 1598–1618 (2022). DOI: https://doi.org/10.1134/S1995080222100080
9. L.S. Efremova, M.A. Shalagin, On limit sets of simplest skew products defined on multidimensional cells, Izvestiya VUZ. Applied Nonlinear Dynamics, 32 (6), 796–815 (2024) [in Russian]. DOI: https://doi.org/10.18500/0869-6632-003134
10. L.S. Efremova, D.A. Novozhilov, Chain-recurrent C 0 - Ω-blowup in C 1 -smooth simplest skew products on multidimensional cells, Regul. Chaotic Dyn. 30 (1), 120–140 (2025). DOI: https://doi.org/10.1134/S156035472501006X
11. Z. Nitecki, Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms, The M.I.T. Press, Cambridge, Mass.-London, 1971.
12. A. N. Sharkovsky, Coexistence of cycles of a continuous map of the line into itself, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5 (5), 1263–1273 (1995). DOI: https://doi.org/10.1142/S0218127495000934
13. A.N. Sharkovsky, On cycles and structure of a continuous map, Ukr. Mat. Zh. 17 (3), 104–111 (1965) [in Russian].
14. P.E. Kloeden, On Sharkovsky’s cycle coexistence ordering, Bull. Austral. Math. Soc. 20 (2), 171–177 (1979). DOI: https://doi.org/10.1017/S0004972700010819
15. L.S. Efremova, On the xoncept of the Ω-function for the skew product of interval mappings, J. Math. Sci. 105 (1), 1779–1798 (2001). DOI: https://doi.org/10.1023/A:1011311512743
16. L.S. Efremova, C 1 -smooth Ω-stable skew products and completely geometrically integrable self-maps of 3D-tori, I: Ω-stability, Regul. Chaotic Dyn. 29 (3), 491–514 (2024). DOI: https://doi.org/10.1134/762S1560354724520010
17. L.S. Efremova, Skew products and geometrically integrable maps: results, problems and prospects, in: S. Elaydi et al. (eds.) New developments in discrete dynamical systems, difference equations, and applications, Springer Proc. Math. Stat. 485, 119–145 (2025). DOI: https://doi.org/10.1007/978-3-031-82003-8_7
18. K. Kuratowski, Topology. Vol. 1, Academic Press, New York-London, 1966. DOI: https://doi.org/10.1016/C2013-0-11022-7
19. O.M. Sharkovskii, Non-wandering points and the center of a continuous mapping of the line into itself, Dopov. Acad. Nauk Ukr. RSR, 865–868 (1964) [in Ukrainian].
20. L.S. Block, W.A. Coppel, Dynamics in one dimension, Lecture Notes in Math. 1513, Springer-Verlag, Berlin, 1992. DOI: https://doi.org/10.1007/BFb0084762
21. Z. Nitecky, Maps of the interval with closed periodic set, Proc. Amer. Math. Soc. 85 (3), 451–456 (1982). DOI: https://doi.org/10.1090/S0002-9939-1982-0656122-2
22. A.N. Sharkovsky, V.A. Dobrynsky, Nonwandering points of dynamical systems, in: Dynamical systems and problems of the stability of solutions of differrential equations, Naukova Dumka, Kiev, 165–174 (1973) [in Russian].
23. I.U. Bronshtein, Non-autonomous dynamical systems, Shtiintsa, Kishinev, 1984 [in Russian].
24. V A. Zorich, Mathematical Analysis, Vol. I. Springer-Verlag, Berlin, 2015. DOI: https://doi.org/10.1007/978-3-662-48792-1
Review
For citations:
Efremova L.S., Shalagin M.V. On the asymptotic behavior of the trajectories of skew products with a closed set of periodic points. Mathematics and Theoretical Computer Science. 2025;3(3):58-86. (In Russ.) https://doi.org/10.26907/2949-3919.2025.3.58-86








